ﬁ www gdenarasannapeta.ac.in M www narasonnopeta, jwc@gmail. com

¢ = GOVERNMENT DEGREE COLLEGE /7
' B NARASANNAPETA-SRIKAKULAM DIST.-532421. &

Accredited by NAAC 'B* Grade
(Affiliated to DR.B.R.Ambedkar University)

Detartment of
Computer Science

STUDENT NAME:

SUBJECT CLASS:

VILLAGE:

PH NO:

COLLEGE:

Unit-1

Database Management System

1. Explain the concepts of DBMS.

A.
B.

Data:Data is the collection of raw facts and figures.
Information: The meaningful form of data or processed data is called as
information.

. Field: A field is the lowest level of data item of an entity which is

alternatively called as attribute of that entity.A field is a single item of
data within a database or software program.
For ex, a field may be a customer name, address, or phone number.
Record:Record is the collection of related fields or data.
Ex: S.no Sname Marks
1001 Raj 950
Database File: File is a collection of records having the same set of fields
arranged in the same sequence.
Ex: Student_Profile, Student_marks, etc.
Database: Database is a collection of inter-related data which helps in
efficient retrieval, insertion, and deletion of data from database and
organizes the data in the form of tables, views, schemas, reports etc.
For Example, university database organizes the data about
students, faculty, and admin staff etc.

. DBMS: The software which is used to manage database is called Database

Management System (DBMS). It acts as the interface between users and
the database itself. It is a record keeping system. It allows the data to be
stored, maintained, manipulated, and retrieved.
For Example, MySQL, Oracle etc. are popular commercial DBMS
used in different applications.
It consists of DBMS utilities, database, and data dictionary. Its
responsibilities are:
Multiuser Access Control
Security Management

Backup and Recovery Management

2. What is File-based system? Explain the Drawbacks of file systems?

A File system is used to store, manage, and retrieve data. A file system

can be either manual or computerized. File system allows storing data of
different departments in different data files.

A. Manual File System: In this system data can be stored and maintained in

B.

books, ledgers, and journals etc.

Computerized File System: In this system data can be stored and
maintained in computers. Data can be entered and modified with high
speed. Data can be shared partially.

In File System-
M Files are stored in different places.
* There is no relation between the files.
* Files are developed by different persons on different locations.
Drawbacks of file systems:
A. Uncontrolled data redundancy
. Inconsistency of data
Difficulty in Accessing Data
. Limited data sharing
Poor enforcement of standards
Concurrent access
. Low programmer productivity
Security Problems
No Backup & Recovery facilities
A. Uncontrolled redundancy of data: Redundancy means repeating data. It
is possible that the same information may be duplicated in different files.
This leads to data redundancy results in memory wastage.
B. Inconsistency of data: Because of data redundancythere is a possibility of
entering same data differently in different sub-systems. This leads to data
inconsistency.

“ZOEEUOW

C. Difficulty in Accessing Data: Accessing data is not convenient and efficient
in file processing system.

D. Limited Data Sharing: Data are scattered in various filesalso different files
may have different formats and these files may be stored in different folders
may be of different departments.So, due to this data isolation, it is difficult to
share data among different applications.

E. Poor enforcement of standards: Different applications are developed by
different persons, each person will follow its own standards of defining field
name, field width, and field type. This will create a serious difficulty while
modifying programs, sometimes there will be serious errors due to mismatch
of fields.

F. Concurrent Access:Multiple users are allowed to access data
simultaneously.this is for the sake of better performance and faster
response.But File system does not support multiple users to access the data
at a time.

G. Low programmer productivity:-Programmer productivity is a measure of time
taken to develop an application. It is inversely proportional to developing time.
Because ofFile system like data redundancy, inflexibility, and poor enforcement
standards the programmer productivity will become lower.

H. Security Problems: File System has no password protection to the data. So
unauthorized persons can access the data. So it has limited security.

I. No Backup & Recovery Facilities:- Backup means the original data will be
stored in different device. If the original data was removed then the backup

3. Various Objectives of Database Management
System: A. Mass Storage:

DBMS can store a lot of data in it. It can store thousands of records in

it and one can fetch all that data whenever it is needed.
B. Removes Duplicity:

If you have lots of data then data duplicity will occur for sure at any
instance. DBMS guarantee it that there will be no data duplicity among all
the records. While storing new records, DBMS makes sure that same data
was not inserted before.

C. Multiple Users Access:

No one handles the whole database alone. There are lots of users who
are able to access database. So this situation may happen that two or
more users are accessing database. They can change whatever they want,
at that time DBMS makes it sure that they can work concurrently.

D. Data Protection:

DBMS gives a master level security to their data. No one can alter or
modify the information without the privilege of using that
data.Information such as bank details, employee"s salary details and sale
purchase details should always be kept secured. Also all the companies
need their data secured from unauthorized use.

E. Data Back up and recovery:

Sometimes database failure occurs so there is no option like one can
say that all the data has been lost. There should be a backup of database
so that on database failure it can be recovered. DBMS has the ability to
backup and recover all the data in database.

F. Everyone can work on DBMS:

There is no need to be a master of programming language if you want
to work on DBMS. Any accountant who is having less technical knowledge
can work on DBMS.

G. Integrity:

Integrity means your data is authentic and consistent. DBMS has
various validity checks that make your data completely accurate and
consistence.

H. Platform Independent

One can run dbms at any platform. No particular platform is required

to work on database management system.
4. Evaluations of DBMS:

The following are some of the major evaluations of DBMS

<
1960 - First DBMS designed by Charles Bachman at general electronics
known as integrated data source(IDS).

1960 - IBM developed the information management system called IBM.

X3

*

1970 - Edgacodd from IBM create a relational data model

X3

*

1976 - Peterchan presented the Entity relationship model

1980 - SQL developed by IBM became the standard query language for
databases becomes a widely accepted database component

1985- Object-oriented DBMS develops.

1990s- Incorporation of object-orientation in relational DBMS.

1991- Microsoft ships MS access, a personal DBMS and that displaces all
other personal DBMS products.
1995: First Internet database applications

1997: XML aEp_lied to database processing. Many vendors begin to
integrate XML into DBMS products.

. Classification of Database Management System:

. Based on the number of users
Single user: As the name itself indicates it can support only one user at a
time. The user may design, maintain and write the database programs.

Multiple users:It supports multiple users concurrently.
For example a student in the college should have the database containing his
information. It must be accessible to all the departments related to him.

. Based on the cost

Low cost DBMS : The cost of these systems vary from $100 to
$3000.

Medium cost DBMS : Cost varies from $10000 to $100000.

High cost DBMS : Cost pf these systems are usually more than
$100000..

. Based on the access

This classification simply based on the access to data in the database
systems.
Sequential access — One after the other.
Direct access- all at once

. Based on the usage

Online transaction processing (OLTP) DBMS - They manage the
operational data. Database server must be able to process lots of simple
transactions per unit of time. Transactions are initiated in real time, in
simultaneous by lots of user and applications hence it must have high
volume of short, simple queries.

Online analytical processing (OLAP) DBMS - They use the operational data
for tactical and strategical decision making. They have limited users deal
with huge amount of data, complex queries.

Big data and analytics DBMS — To cope with big data new database
technologies have been introduced. One such is NoSQL (not only SQL).
Multimedia DBMS - Stores data such as text, images, audio, video and 3D
games which are usually stored in binary large object.

GIS DBMS - Stores and queries the spatial data.

Sensor DBMS - Allows to manage sensor data, bio-metric and telematics
data.

Mobile DBMS - Runs on the smartphones, tablets. It Handles the local

E. Based on the data model
Relational database - This is the most popular data model used in
industries. It is based on the SQL. They are table oriented which means data
is stored in different access control tables, each has the key field whose task
is to identify each row.
Examples are MYSQL(Oracle, open source), Oracle database (Oracle),

Microsoft SQL server(Microsoft) and DB2(IBM).

T intonal Oniabans Manags mand Gystam |

ol oy
e
P .
e
| Dmbabas s
AL ...__.l
-'-- ..-'-
e il M F— - ¥ i,
Tl] i | | tabag | | ok |
'] 1 1
b J P | Figin ! . L | Fiaie
= = £ i
Fiokl | e | Fipin | A - [Pt |
= = f |
Fie bt | P, | : # [Fhard |
]

Object oriented database — The information here is in the form of the object
as used in object oriented programming. It adds the database functionality to
object programming languages. It requires less code, use more natural data
and also code bases are easy to maintain.

Examples are ObjectDB (ObjectDB software).
Hierarchical database — In this, the information about the groups of parent
or child relationships is present in the records which is similar to the
structure of a tree. Here the data follows a series of records, set of values
attached to it. They are used in industry on mainframe platforms.

Higrarchical Database Model

Examples are IMS(IBM), Windows registry
(Microsoft). Network database — Mainly used on large

digital computers. If there are more connections, then this bt
database is efficient. They are similar to 7 ,_.a-f"'-ﬂ““ah
hierarchical database they look like interconnected Clucke st ics
network of records. =
Mo

Examples are CA-IDMS (COMPUTER :
Transschiong
associates), IMAGE(HP). I

Teams

F. Based on the sites over which network is distributed
Centralized database system — The DBMS and database are stored at the
single site that is used by several other systems too. We can simply say that
data here is maintained on the centralized server.

Ll Compuar

i :-15-'.=n-;-15$'r,«"

H‘I‘;":l'-dt‘i

Parallel network database system - This system has the advantage of
improving processing input and output speeds. Majorly used in the
applications that have query to larger database. It holds the multiple central
processing units and data storage disks in parallel.

Distributed database system - In this data and the DBMS software are
distributed over several sites but connected to the single computer.

Hal = EZE??JE? ul B38

H-*.- A % = Database
:--"*' [”" Manager
'I . Metwork ¥ ;"‘
. h_,i"—:{“ - "_]Elalabasu
- -.._J.;I Manager
. Database

ETZ 5] Manager I:-
== a@

Client-server database system:

Clients are generally the personal computers or workstations
whereas servers are the large workstations, mini range computers or a main
frame computer system. The applications and tools of the DBMS run on the
client platforms and the DBMS software on the server. Both server and client
computers are connected over the network.

6. What is data model? Explain various types of database models?

Model is an abstraction of reality. The purpose of the data model is to
convey the details of the system for better understanding of the organization
of data. There are five types of data models. They are:

A. Hierarchical data model
Network data model
Relational Data model
Object oriented data model
ER model
EER model

T EHUOW

A. Hierarchical Data Model:

This model was developed in the end of 1960 to manage large amounts
of data for Complex projects. This type of data model is based on the
hierarchical relation presented in the form of a tree structure in which the
root segment is kept at the top and further branches come downwards from
the “root” segment. In this model 1:1 and 1:M associations are allowed and
M:1 association is not permitted. While mapping conceptual model M:1
association is converted into 1:1 association.

The hierarchical structure is used as the physical order of records in
storage. One can access the records by navigating down through the data
structure using pointer. The "root" in the structure is a single table in the
database and other tables act as the branches flowing from the root. The
diagram below shows a typical hierarchical database structure.

L]

1Nan“.=-| IAHEI I Class E I subject I

B. Network Data Model:

The network model was implemented in the early 1978. It was created
to represent Complex data relationships more efficiently than the
hierarchical data model. To organize data it uses “directed graphs” instead of
tree-structure. In this child can have more than one parent it allows more
connections between nodes.

Ex: An employ work for two departments is not possible in hierarchal
model, but here it is possible

—e— — o —
EPARTRAEMTL | DERPARTMENTZ | DEPARTRAENTI | SUPPLIERS
| _______—|—-—_'__:-\._‘__*
| ERFLOFEE | PROIECTS |

Every conceptual data model is almost like a network data model. It is

classified into three types. They are:

1. Simple Network Data Model: It consists of a set of files with 1:1 and 1:M
pair wise associations. May to many association is not permitted in the
simple network data model.

2. Complex Network Data Model: If a network data model has at least one
many to many associations, then it is called complex network data model.

3. Limited Network Data Model: In this model each and every file of the
simple network data model will be divided into master file and transaction
file.

C. Relational Data Model:The relational data model was developed by E.F.
Codd in 1970. There are no physical links as they are in hierarchical data
model. It is the primary data model, which is used widely around the world
for data storage and processing. Itrepresents the database as a collection of
relations. A relation is nothing but a table of values. Every row in the table
represents a collection of related data values. It organizes records in form of
table and relationships between tables are using common fields.

Columns or Figlds or Alfributes Domakn

I T T

F'*:cm*'-‘f!f_ Sw_ID | 5 _Name | 5_Address Birthdate
ot |
o)
T Anita | 41, Kendy Av, | 15-07-1981 F
Rows » &
! L T Dravid | 72, Bazant Av, | 23-06-1980 M =Ty
Records = E
or 52 2
Tupibes M 125 | shams |V 5;:““"”“ 19-09-1982 | F 3=
o 13 Atul 58, Lwr.Rd. 27-0B-1978 M +
‘-ﬁ‘ Degrea | Mo, of Columps) <
Data Values

It is the most popular data model of the present day because of the following

reasomns:
>

>
>

It is simple to implement.

It has simple terminology.

It uses the simple concept of primary key and secondary key to connect
any two files.

>

In reality almost all the databases are developed based on relational
data model. Some of them are Dbase, FoxPro, Ms-Access and Oracle
etc.

D. Object oriented data model:

Object oriented data model is based upon real world situations. These
situations are represented as objects, with different attributes. These
entire objects have multiple relationships between them. Elements of

Object oriented data model are:

v
Objects: The real world entities and situations are represented as objects

v
Attributes and Method: Every object has certain characteristics. These
are represented using Attributes. The behavior of the objects is
represented using Methods.

Class: Similar attributes and methods are grouped together using a class.
An object can be called as an instance of the class.

Inheritance: A new class can be derived from the original class. The
derived class contains attributes and methods of the original class as
well as its own.

Example In this Object Oriented data model-
v
Shape is a class. Circle, Rectangle and Triangle are all objects in
this model.

v
Circle has the attributes Center and Radius.

v
Rectangle has the attributes Length and Breath

v
Triangle has the attributes Base and Height.

The objects Circle, Rectangle and Triangle inherit from the class Shape.

b= B S
Conrt rweand)
st Pord ivme ey 3
il ' = E_.
CHRRLT RECTAMNGLE THEA MO
Commiry ey Larygih s
Radius Areadth Fh=ighit

E. Entity Relationship Data Model (ER Data Model):

An Entity-relationship model (ER model) describes the structure of a
database with the help of a diagram, which is known as Entity Relationship
Diagram (ER Diagram). An ER model is a design or blueprint of a database that
can later be implemented as a database.

An ER diagram shows the relationship among entity sets. An entity set is
a group of similar entities and these entities can have attributes.

In this model
Rectangle :Represents Entity sets.

Ellipses :Attributes

> Diamonds : Relationship Set

ISJines: They link attributes to Entity Sets and Entity sets to Relationship
et

&
LT |

I Sriclent] College

F. Extended Entity-Relationship (EE-R) Model:

EER is a high-level data model that incorporates the extensions to the
original ER model that represent the requirements and complexities of complex
database.

In addition to ER model concepts EE-R includes -

Subclasses and Super classes.
Specialization and Generalization.
Category or union type.
Aggregation.

5

%

*
0.0

R/
0‘0

0,
0.0

7. Advantages of Database Management System:

A Database Management System (DBMS) is defined as the software system
that allows users to create, read, update and delete data in database. It is a layer
between programs and data.

Compared to the File Based Data Management System, Database
Management System has many advantages. Some of these advantages are given
below.

A. Reducing Data Redundancy

The file based data management systems contained multiple files that
were stored in many different locations in a system or even across multiple
systems. Because of this, there were sometimes multiple copies of the same file
which lead to data redundancy.

This is prevented in a database as there is a single database and any
change in it is reflected immediately.

B. Consistency of data:-

In Database the repeated data will be minimized then it always gives

consistent results.
C. Sharing of Data:

In a database, the users of the database can share the data among
themselves. There are various levels of authorisation to access the data, and
consequently the data can only be shared based on the correct authorisation.

Many remote users can also access the database simultaneously and
share the data between themselves.

D. Concurrent Access:-

Database supports multiple users to access the data. Multiple users can

access the data at a time.
E. Data Security

Data Security is vital concept in a database. Only authorised users
should be allowed to access the database and their identity should be
authenticated using a username and password. Unauthorised users should
not be allowed to access the database under any circumstances as it violates
the integrity constraints.

F. Backup and Recovery

Database Management System automatically takes care of backup and
recovery. The users don't need to backup data periodically because this is
taken care of by the DBMS. Moreover, it also restores the database after a
crash or system failure.

G. Better enforcement of standards:-

Database is a collection of related files. These files are developed by
different persons under the guidance of Data Base Administrator. They will
give the same the field name, field type and field size in the files.

H. Increased programmer productivity:-

Programmer productivity is a measure of time taken to develop an

application. Database has so many advantages like controlled data
redundancy, consistent of data etc. So programming productivity is always
high

8. ANSI-SPARC Architecture

In 1975, ANSI-SPARC realized the need for a three-level approach with
the three levels of abstraction comprises of an external, a conceptual, and an
internal level.

The three-level architecture aims to separate each user's view of the database
from the way the database is physically represented.

Internal level:

‘0

¢ This is the lowest level of data abstraction. It is also known as
physical level.

< It describes how the data are actually stored on storage devices.

< It provides internal view of physical storage of data.

< It deals with Data Compression and Encryption techniques if used.

Conceptual level:

This is the next higher level than internal level of data abstraction.

It describes what data are stored in the database and what relationships

exist among those data.

It is also known as logical level.

It hides low level complexities of physical storage.

Database administrator, application developers and designers work at

this level to determine what data to keep in database.

External Level:

< This is the highest level of data abstraction. It is also known as a
view level.

< It describes only part of the entire database that a end user concern.

< End users need to access only part of the database rather than entire
database.

% Different user needs different views of database and so, there can

be many view level abstractions of the same database.

0,
0.0
0,
0.0

33

%

53

%

e

¢

What are Interfaces in DBMS?

A database management system (DBMS) interface is a user interface
which allows for the ability to input queries to a database without using the
query language itself.

User-friendly interfaces provide by DBMS may include the following:
A. Menu-Based Interfaces for Web Clients or Browsing

These interfaces present the user with lists of options (called menus) that
lead the user through the formation of a request.
B. Forms-Based Interfaces:

A forms-based interface displays a form to each user. Users can fill out all
of the form entries to insert a new data, or they can fill out only certain entries,
in which case the DBMS will redeem same type of data for other remaining
entries.

C. Graphical User Interface:

A GUI typically displays a schema to the user in diagrammatic form. The
user can specify a query by manipulating the diagram. In many cases, GUI"s
utilize both menus and forms.

D. Natural language Interface:

These interfaces accept request written in English or some other language
and attempt to understand them.
E. Speech Input and Output:

There is an limited use of speech say it for a query or an answer to a
question or being a result of a request it is becoming common place
Applications with limited vocabularies

Ex: inquiries for telephone directory, flight arrival/departure, and bank
account information are allowed speech for input and output to enable ordinary
folks to access this information.

F. Interfaces for DBA:

Most database system contains privileged commands that can be used
only by the DBA"s staff. These include commands for creating accounts, setting system
parameters, granting account authorization, changing a schema, reorganizing
the storage structures of a database.

9. Components of Database Management System:

DBMS consists of database, DBMS utilities, data dictionary,
application
developers, users, and Database Administrator.

A. DBMS:

The software which is used to manage database is called Database
Management System (DBMS). It acts as the interface between users and the
database itself. It is a record keeping system. It allows the data to be stored,
maintained, manipulated, and retrieved. These are very expensive than file
systems.

B.

For Example, MySQL, Oracle etc. are popular commercial DBMS used
in different applications.
Database:

Database is a collection of inter-related data which helps in efficient
retrieval, insertion, and deletion of data from database and organizes the
data in the form of tables, views, schemas, reports etc.

For Example, university database organizes the data about students,
faculty, and admin staff etc.

Data dictionary:

Data Dictionary consists of database metadata i.e, Data about
Data. Data Dictionary consists of the following information -
< Name of the tables in the database
» Constraints of a table i.e. keys, relationships, etc.
¢ Columns of the tables that related to each other which specifies field

name, field type and field size.
< Owner of the table
< Last accessed information of the object
< Last updated information of the object

Freld Narma Datatvpe | Field Length | Constraint Dagcriptian
Student_ID Mumber |5 Primary Kay Studentid
Student_Mame Varchar 20 Matull harme of tha
student
Student_Address Varchar E b Mot ull Addressof the
student
Student_City Varchar | 20 Mot Mull City of the student

There are the two types of data dictionary -

Active Data Dictionary

The DBMS software manages the active data dictionary automatically. It is
also known as integrated data dictionary.

Passive Data Dictionary

Managed by the users and is modified manually when the database
structure change. Also known as non-integrated data dictionary.

D. Application developers:

These are the qualified programmers/analysts. They can write and
develop programs. These programs are developed under the guidance of DBA.
These programs are used by user groups.

E. User groups:

These are group of end users. They can use the programs developed by
the Application developers.

F. Databgse Administrator:

* Itis the apex body.

B
It controls and coordinates all the software entities, database entities,
application developers and user groups.

BREMS Uil g

Database . | User Groups

Data Dictiorary/ [

Data Directary

" 4

Application Developers | = [Database
Admimistrator

10. DBMS - Architecture:

The design of a DBMS depends on its architecture. It can be centralized
or decentralized or hierarchical.

The architecture of a DBMS can be seen as either single tier or multi-tier.
An n-tier architecture divides the whole system into related but independent n
modules, which can be independently modified, altered, changed, or replaced.

In 1-tier architecture, the DBMS is the only entity where the user
directly sits on the DBMS and uses it. Any changes done here will directly be
done on the DBMS itself. Database designers and programmers normally prefer
to use single-tier architecture.

In 2-tier architecture, it must have an application through which the
DBMS can be accessed. Programmers use 2-tier architecture where they access
the DBMS by means of an application. Here the application tier is entirely
independent of the database in terms of operation, design, and programming.

In 3-tier Architecture, it separates its tiers from each other based on the
complexity of the users and how they use the data present in the database. It is
the most widely used architecture to design a DBMS. The tiers are

o Database (Data) Tier — At this tier, the database resides along with its
query processing languages. We also have the relations that define the
data and their constraints at this level.

o Application (Middle) Tier — At this tier reside the application server and
the programs that access the database. The application layer sits in the
middle and acts as a mediator between the end-user and the database.

o User (Presentation) Tier — End-users operate on this tier and they know
nothing about any existence of the database beyond this layer. At this
layer, multiple views of the database can be provided by the application.
All views are generated by applications that reside in the application tier.

Presantation Tiar

Application Tier

Database Tier
11. DBMS Vendors and Their Products:

There are many different vendors that currently produce relational

database management systems (RDBMS).
The leading vendors of RDBMS are listed below:

+* RDBMS Vendors ** | **** RDBMS Product ****
Computer Associates INGRES
IBM DB2
INFORMIX Software INFORMIX
Oracle Corporation Oracle
Microsoft Corporation MS Access
Microsoft Corporation SQL Server
MySQL AB MySQL
NCR Teradata
PostgreSQL Dvlp Grp PostgreSQL
Sybase Sybase 11

UNIT-II
1. Entity-relationship model:

An Entity-relationship model (ER model) describes the structure of a
database with the help of a diagram, which is known as Entity Relationship
Diagram (ER Diagram). It is a high-level data model. An ER model is a design or
blueprint of a database that can later be implemented as a database.

The main components of E-R model are Entity set, Attributes and
Relationships.

2. ER Diagram:

An ER diagram shows the relationship among entity sets. An entity set is
a group of similar entities and these entities can have attributes.

In terms of DBMS, an entity is a table in database, so by showing
relationship among tables and their attributes, ER diagram shows the complete
logical structure of a database.

In the following diagram we have two entities Student and College and
their relationship. Student entity has attributes such as Stu_Id,
Stu_Name&Stu_Addr and College entity has attributes such as
Col_ID&Col_Name.

5] 62
Student tu{'? College

3. Building blocks of Entity Relationship Diagram:

The components of the entity-relationship model are the building block
which helps in the generation of an ER diagram, which finally results in the
design of the logical structure of a database. There are three basic components
of the Entity-Relationship Model.

All these components have definite diagrammatical representations that
are used for the generation of ER Diagram.

A. Entity:
An entity can be called as the basic object which represents the ER
Model. Entities are Real world objects or things or articles or pieces that have

an existence without any dependence on any other object.
For example: Bank account, Student, employ all these are entities have

their own properties which are known as attributes.
B. Attribute:
Attributes describe the properties and characteristics of the entity.
For example: Attributes of Bank account can be “ Account No, Account
Holder Name, Balance” etc.
There exist seven types of attributes for specific types of entities.

a)

b)

d)

Simple Attribute: Simple attribute are those attributes which cannot be
divided further because of their atomic nature.

For Example: The roll number of a student.
Student

Composite attribute: An attribute which can be divided into
components is a composite attribute.

For Example: The address can be further divided into house
number, street number, city, state, country and pin code, the name can
also be divided into first name middle name and last name.

T a2
G A

T — S 1008

Derived Attribute:Derived Attributes are those attributes whose
values are derived from the already stored attributes in the database.

For example: Age of a student calculated with current date and date
of birth.

Single Valued Attribute:Single valued attribute are those which
contains only a single specified value or a single unique value.
For example: Roll no, Aadhar Number, SSN No, etc.

SN

Student

Stuclamt

e) Multi-Valued Attribute: Multi-valued attributes are those which can have
multiple values against them.
For example: Address(permanent, present), Email_id, Phone
number of a student (Landline and mobile.

Stpcleni

f) Key Attributes: Key attributes are those attributes which can identify an
entity uniquely in an entity set.

For example: Here, the attribute “Roll_no” is a key attribute as it can
identify any student uniquely.

g) Null Value Attribute:Null value attributes are those which can
be left blank without passing any value.
For example: A person can have a name without a middle
name and hence middle name field can be left blank or null.

Studant

First Name + + Last Name

c. Relationship:
The association among entities is called a relationship.
a) One-to-one — One entity from entity set A can be associated with at most one
entity of entity set B and vice versa.

L i -
e |
Lo e o
o I -
& B

For example, If there are two entities ,Person® (Id, Name, Age, Address)and
.Passport" (Passport_id, Passport_no). So, each person can have only one
passport and each passport belongs to only one person.

Person | < has = i Passport

b) One-to-many - One entity from entity set A can be associated with more than
one entities of entity set B however an entity from entity set B, can be
associated with at most one entity.

e x|
o ——=0
n‘_ ————

e e
A B

For example, If there are two entity type ,,Customer® and ,Account” then each
,Customer" can have more than one ,Account"” but each ,Account” is held by only one
,Customer®. In this example, we can say that each Customer is associated with many
Account. So, it is a one-to-many relationship. But, if we see it the other way i.e
many Account is associated with one Customer then we can say that it is a
many-to-one relationship.

.ﬂu:mrrwr <. has > | Account

c) Many-to-one — More than one entities from entity set A can be associated with
at most one entity of entity set B, however an entity from entity set B can
be associated with more than one entity from entity set A.

@ o
[+ R p—— i * |
l'.'H-—_=___=—_—_ e]

= ——an
A B

A project can have more than one student working on it. A team of five
students in a college in assigned a project that they need to complete in let us
say one month. This states a relationship between two entities Student and
Project.

W ik G i

L7

Relaticnship

d) Many-to-many — One entity from A can be associated with more than one
entity from B and vice versa.

D= == 0§
O -
o e o
- [+]
A B

Example: If there are two entity type ,Customer® and ,Product” then each
customer can buy more than one product and a product can be bought by
many different customers.

Cusiomes | buys 3 1 Praduct

Cardinality:
It defines the number of entities in one entity set, which can be
associated with the number of entities of other set via relationship set.

Degree of Relationship:

The degree of a relationship is the number of entity types that participate
(associate) in a relationship. By seeing an E-R diagram, we can simply tell the
degree of a relationship i.e the number of an entity type that is connected to a
relationship is the degree of that relationship.

For example: if we have two entity type ,Customer® and ,Account” and they are
linked using the primary key and foreign key. We can say that the degree of
relationship is 2 because here two entities are taking part in the relationship.

Customer <" has | Account

Aaginn 2

Based on the number of entity types that are connected we have the
following degree of relationships:

A. Unary

B. Binary

c. Ternary

D. N-ary

A. Unary (degree 1):

A unary relationship exists when both the participating entity type are
the same. When such a relationship is present we say that the deg of
relationship is 1.

For example: Suppose in a classroom, we have many students who belong
to a particular club-like dance club, basketball club etc. and some of them are
club leads. So, a particular group of student is managed by their respective club
lead. Here, the group is formed from students and also, the club leads are
chosen from students. So, the ,Student® is the only entity participating here. We can
represent this relationship using the E-R diagram as follows:

Studant w7 manages S

Unary Malstiomahiz
[dgren 1]

B. Binary (degree 2):

A binary relationship exists when exactly two entity types participates.
When such a relationship is present we say that the degree is 2. This is the
most common degree of relationship. It is easy to deal with such relationship as
these can be easily converted into relational tables.

For example: We have two entity type ,Customer® and ,Account” where each
,Customer® has an ,Account® which stores the account details of the ,Customer”. Since
we have two entity types participating we call it a binary relationship. Also, one
,Customer® can have many ,Account” but each ,Account® should belong to only one
,Customer®. We can say that it is a one-to-many binary relationship.

Binary Relabionship
{degren 1)

C. Ternary (degree 3):

A ternary relationship exists when exactly three entity type participates.
When such a relationship is present we say that the degree is 3.

As the number of entity increases in the relationship, it becomes complex
to convert them into relational tables.

For example: We have three entity type ,Employee®, ,Department” and
,Location®. The relationship between these entities is defined as an employee works in
a department, an employee works at a particular location. So, we can see we
have three entities participating in a relationship so it is a ternary relationship.
The degree of this relation is 3.

Employes —— " ° - Department

Location

Tamary Ralatiznship
[dugree 3]
D. N-ary (n degree):
An N-ary relationship exists when ,n" number of entities are participating.
So, any number of entities can participate in a relationship. There is no
limitation to the maximum number of entities that can participate.

We represent an N-ary relationship as follows:

E1 | <R T i ES
E2 | | Ed4
' Ea

Fuwp HAelniorang

In the above example, E1 denotes the first entity type, E2 denotes
the second entity type and so on. R represents the relationship. So, here we
have a total of 5 entity type which participates in the relationship. Therefore, the
degree of the above n-ary relationship is 5.

4. Classification of Entity Set in DBMS:

An entity set is a group of entities that possess the same set of attributes.
Each entity in an entity set has its own set of values for the attributes which
make it distinct from other entities in a table. No two entities in an entity set
will have the same values for the attributes.

Types of Entity Sets-
An entity set may be of the following two types-
Entity Sat

" o - - . = T -

a) Strong Entity Set:

An entity set that has a primary key using which, entities in the table can
be uniquely identified. This kind of entity set is termed as a strong entity set. it
is also known as a regular entity set.

A strong entity set is an entity set that contains sufficient attributes to
uniquely identify all its entities.In other words, a primary key exists for a strong
entity set.

Svm}aols Used:

Primary key of a strong entity set is represented by underlining it.
v

v

A single rectangle is used for representing a strong entity set.

A diamond symbol is used for representing the relationship that exists
between two strong entity sets.

A single line is used for representing the connection of the strong entity set
with the relationship set.

A double line is used for representing the total participation of an entity set
with the relationship set.
Example: Consider the following ER diagram-

@ D D e

Stsdent

= AfaH el if Coures

Two strong entity sets “Student” and “Course” are related to each other.
Student ID and Student name are the attributes of entity set “Student”.
Student ID is the primary key using which any student can be identified
uniquely.
Course ID and Course name are the attributes of entity set
“Course”.Course ID is the primary key using which any course can be identified
uniquely.

Double line between Student and relationship set signifies total
participation.
Single line between Course and relationship set signifies partial
participation.
It suggests that there might exist some courses for which no
enrollments are made.

b) Weak Entity Set-

A weak entity set does not have any primary key which can identify each
entity in a set distinctly.

In other words, a primary key does not exist for a weak entity set.
However it contains a partial key called as a “discriminator”. Discriminator can
identify a group of entities from the entity set. Discriminator is represented by
underlining with a dashed line.

Note:- The combination of discriminator and primary key of the strong
entity set makes it possible to uniquely identify all entities of the weak entity
set. Thus, this combination serves as a primary key for the weak entity set.

Clearly, this primary key is not formed by the weak entity set completely.

Symbols Used:

A double rectangle is used for representing a weak entity set.

A double diamond symbol is used for representing the relationship that
exists between the strong and weak entity sets and this relationship is known
as identifying relationship.

A double line is used for representing the connection of the weak entity
set with the relationship set.

Example:

Buslding it @ _— A partmant

In this ER diagram,

One strong entity set “Building” and one weak entity set “Apartment”
are related to each other.

Strong entity set “Building” has building number as its primary key.

Door number is the discriminator of the weak entity set “Apartment”.

This is because door number alone cannot identify an apartment
uniquely as there may be several other buildings having the same door
number.

Double line between Apartment and relationship set signifies total
participation.

It suggests that each apartment must be present in at least one building.

Single line between Building and relationship set signifies partial
participation.

It suggests that there might exist some buildings which has no
apartment.

5. Enhanced entity-relationship model:

EER is a high-level data model that incorporates the extensions to the
original ER model. Enhanced entity-relationship diagrams are advanced
database diagrams very similar to regular ER diagrams which represents
requirements and complexities of complex databases.

It is a diagrammatic technique for displaying the following concepts.

A. Sub Class and Super Class

B. Specialization and Generalization
C. Union or Category

D. Aggregation

These concepts are used when they come in EER schema and the
resulting schema diagrams called as EER Diagrams.

It is a diagrammatic technique for displaying the Sub Class and Super
Class; Specialization and Generalization; Union or Category; Aggregation etc.

A. Sub Class and Super Class
> Sub class and Super class relationship leads the concept of Inheritance.
> Relationship between subclass and superclass is denoted with ~ {d}
symbol.
1. Super Class:
> Super class is an entity type that has a relationship with one or
more subtypes.
> An entity cannot exist in database merely by being member of any super

class.
For example: Shape super class is having sub groups as Square,
Circle, Triangle.

2. Sub Class:

> Sub class is a group of entities with unique attributes.
> Sub class inherits properties and attributes from its super class.

For example: Square, Circle, Triangle are the sub class of Shape
super class.
Super class _E-l‘]:l_pﬁ
d
e
[Souans | | Ciroo | | Trangs]
SuD class

Flig Super chassrBiub o ses Redationship

B. Specialization and Generalization
Generalization:

> The process of defining a general entity type from a collection of
specialized entity types.

> It is a bottom-up approach, in which two lower level entities combine
to form a higher level entity.

> Generalization is the reverse process of Specialization.

> It defines a general entity type from a set of specialized entity type.

For example: Tiger, Lion, Elephant can all be generalized as Animals.

I T |

Specialization: Fig. Gererakzation

> It is the opposite of generalization:

> Specialization is a process that defines a group entity which is divided
into subgroups based on their characteristic.

> Itis a top-down approach, in which one higher entity can be broken
down into two lower-level entity.

> It defines one or more sub class for the super class and also forms the
superclass/subclass relationship.

For example: Employee can be specialized as Developer or Tester, based on
what role they play in an Organization.

| Employes I

}

Top Dovwn
ok Anproach

| Desveloper Teagtar

Fig. Speacialization
C. Category or Union
> Category represents a Relationship of one super or sub class with more
than one super class.

For example Car booking, Car owner can be a person, a bank (holds a
possession on a Car) or a company. Category (sub class) — Owner is a
subset of the union of the three super classes — Company, Bank, and
Person.

A Category member must exist in at least one of its super classes.

D. Aggregation:

>
>

It is a process when two enti e freated as a single entity.

Aggregation is a processfthat'tepresentsvetirelationship between a whole
object and its component parts.

It abstracts a relationship between objects and viewing the relationship as
an object.

For Example: The relation between College and Course is acting as an Entity in
Relation with Student.

Fig. Aggregation

6. Advantages of ER Model:

The ER diagram is highly popular as it carries multiple benefits which
include:

>

It is very simple:

ER model is very simple because if we know relationship between
entities and attributes, then we can easily draw an ER diagram.
Blueprint to work:

It provides a blueprint to work with when you do start creating the
actual database.
Highly Flexible:

The ER diagram can be effectively utilized for establishing and
deriving relationships from the existing ones.
Better visual representation:

ER model is a diagrammatic representation of any logical structure
of database. By seeing ER diagram, we can easily understand relationship
among entities and relationship.

Effective communication tool:
It is an effective communication tool for database designer.

Highly integrated with relational model:

ER model can be easily converted into relational model by simply

converting ER model into tables.
Easy conversion to any data model:

ER model can be easily converted into another data model like
hierarchical data model, network data model and so on.

7. ER-diagram for Hospital Management System:
ER diagram for a hospital management system have three entities i.e
Doctor, Patient, Medicine.

(_ Dogtor id _ Patient id
B e et e
" Bpecializ ™| 7 Qualifica ™. . [DoB
S_ten | ‘& Hen 2/ | =

e e B S .
Doctor | < treats = Pationt |
=.d.-”“““-_. " o id;rm ,
et — < N ey
4 Fll‘lt__._ | & LII!‘-‘l o= B . Locality
Middle o i T O
_ Middle o Town/City
N,
| Medicing |
Price | _ Quantity
i, el T

Hospital Managemant System

In the above diagram, Entity Doctor has key attribute 'doctor_id' which
will be used to identify the doctors. It also has two multivalued attributes as
'specialization' and 'qualification' as a doctor may have more than one
qualification and may be specialized in more than one fields. The Doctor and
Patient entity have a one-to-many relationship as a Doctor may treat more than
one patient. Similarly, Patient and Medicine have a many-to-many relationship
as a patient may buy more than one medicine and vice-versa. 'Code' is the key
attribute for Medicine which is unique for every medicine. The Patient has many
attributes Patient_id, DOB, Age, etc. 'Age' is the derived attribute here. Also, it
has a composite attribute 'Address’ which can further be divided into two

attributes 'Locality' and 'Town'.

8. ER-Diagram for Library Management System:

m Lib Card No.

G G
passwor
Joining Date

Person
No.of issued Books

Publisher
ISBN No. Book @"f
Flace of Publication
Year OF
© FPublication

Librarian

Author

MName

Group

available
or not

UNIT-III

What is Relational Model?

Relational Model (RM) represents the database as a collection of relations.

A relation is nothing but a table of values. Every row in the table represents a
collection of related data values. These rows in the table denote a real-world
entity or relationship.

Some popular Relational Database management systems are:

DB2 and Informix Dynamic Server - IBM
Oracle and RDB - Oracle
SQL Server and Access - Microsoft

Relational Model Concepts

a.

Attribute: Each column in a Table. Attributes are the properties which
define a relation.

E.g: Student_Rollno, NAME,etc.
Tables: In the Relational model relations are saved in the table format. It
is stored along with its entities. A table has two properties rows and
columns. Rows represent records and columns represent attributes.

. Tuple: It is nothing but a single row of a table, which contains a single

record.

. Relation Schema: A relation schema represents the name of the relation

with its attributes.

Ex: Employee(Emp number, Name, Designation, Age, Salary)

. Degree: The total number of attributes which in the relation is called the

degree of the relation.
Cardinality: Total number of rows present in the Table.

g. Column: The column represents the set of values for a specific attribute.

Relation key: The key for a table is the attribute that can uniquely
identify all the tuples. In the Employee table, the key is Emp Number as it
is unique for every single employee,.

Attribute domain: Every attribute has some pre-defined value and scope
which is known as attribute domain

Table also called |

B2 gurSoom

CustomerlD CustomeriName Statlus

1 Google Active
2 Amazon Active uple OR Row
3 Apple Inactive

Attributes

Constraints:
Every relation has some constraints that must hold for it to be called a
relational model. These are as followed -
a) Key constraints - There must be at least one set of attributes that can
identify a tuple in a unique manner. This set is known as a key.

b) Domain constraints - There are some domain specific constraints that
must be followed in a database.

i. Example - The salary of an employee cannot be negative
so the salary field has only positive values.
c) Referential Integrity constraints - These constraints are used to
describe the behaviour of foreign keys. A foreign key is a key of a
relation that can be referred in another relation.

Codd's 12 Rules:

Dr Edgar F. Codd, after his extensive research on the Relational Model of
database systems, came up with twelve rules of his own, which according to
him, a database must obey in order to be regarded as a true relational database.

Rule 1: Information Rule
o The data stored in a database, may it be user data or metadata, must
be a value of some table cell. Everything in a database must be stored
in a table format.

Rule 2: Guaranteed Access Rule
o Every single data element (value) is guaranteed to be accessible
logically with a combination of table-name, primary-key (row value),
and attribute-name (column value).

Rule 3: Systematic Treatment of NULL Values
o The NULL values in a database must be given a systematic and
uniform treatment. This is a very important rule because a NULL can
be interpreted as one the following — data is missing, data is not
known, or data is not applicable.

Rule 4: Active Online Catalog
o The structure description of the entire database must be stored in an
online catalog, known as data dictionary, which can be accessed by
authorized users.

Rule 5: Comprehensive Data Sub-Language Rule
o A database can only be accessed using a languages that supports data
definition, data manipulation, and transaction management
operations.

Rule 6: View Updating Rule
o All the views of a database, which can theoretically be updated, must
also be updatable by the system.
Rule 7: High-Level Insert, Update, and Delete Rule
o A database must support high-level insertion, updation, and deletion.
This must not be limited to a single row, that is, it must also support
union, intersection and minus operations to yield sets of data records.

Rule 8: Physical Data Independence

o The data stored in a database must be independent of the applications
that access the database. Any change in the physical structure of a
database must not have any impact on how the data is being accessed
by external applications.

Rule 9: Logical Data Independence
o The logical data in a database must be independent of its user's view
(application). Any change in logical data must not affect the
applications using it.

o For example, if two tables are merged or one is split into two different
tables, there should be no impact or change on the user application.
This is one of the most difficult rule to apply.

Rule 10: Integrity Independence
o A database must be independent of the application that uses it. All its
integrity constraints can be independently modified without the need
of any change in the application. This rule makes a database
independent of the front-end application and its interface.

Rule 11: Distribution Independence
o The end-user must not be able to see that the data is distributed over
various locations. Users should always get the impression that the
data is located at one site only.
o This rule has been regarded as the foundation of distributed database
systems.

Rule 12: Non-Subversion Rule

o If a system has an interface that provides access to low-level records,
then the interface must not be able to subvert the system and bypass
security and integrity constraints.

Types of Keys in Relational Model:

STUDENT
STUD NO | STUD NAME | STUD PHONE | STUD STATE | 5TUD COUNT | 8STUD AG
RY E
1 BAM 9716271721 Harvana India 20
2 BAM 9898291281 Punjab India 19
3 SUIIT 7898291981 Rajsthan India 18
4 SURESH Punjab India 21
Table 1
STUDENT COTURSE

sTUD NO COURSE NO COURSE NAME

1 Cl1 DEBMS

2 C2 Computer Networks

1 C2 Computer Networks

Table 2

A. Candidate Key:
>

Candidate Key The minimal set of attribute which can uniquely identify a
tuple is known as candidate key. For Example, STUD_NO in STUDENT
relation.

The value of Candidate Key is unique and non-null for every tuple.
There can be more than one candidate key in a relation.

T hﬁ candidate key can be simple (having only one attribute) or composite as
well.

For Example, STUD_NO is candidate key for relation STUDENT. For
Example, {STUD_NO, COURSE_NO} is a composite candidate
key for relation STUDENT_COURSE.
B. Super Key:

’Il; he set of attributes which can uniquely identify a tuple is known as Super
ey.

Adding zero or more attributes to candidate key generates super key.

A candidate key is a super key but vice versa is not true.

For Example, STUD_NO, (STUD_NO, STUD_NAME) etc.
C. Primary Key:
>

The primary key is a column, or set of columns, whose values uniquely

identify each row in the table.

Each table in a relational database must be assigned a primary key.

There can be more than one candidate key in relation out of which one can
be chosen as the primary key.

For Example, STUD_NO, as well as STUD_PHONE both, are
candidate keys for relation STUDENT but STUD_NO can be chosen as the
primary key (only one out of many candidate keys).

D. Alternate Key:
The candidate key other than the primary key is called an alternate
key.
For Example, STUD_NO, as well as STUD_PHONE both, are candidate keys
for relation STUDENT but STUD_PHONE will be alternate key (only one out
of many candidate keys).
E. Foreign Key:

If an attribute can only take the values which are present as values
of some other attribute, it will be a foreign key to the attribute to which it
refers.

The relation which is being referenced is called referenced relation
and the corresponding attribute is called referenced attribute and the
relation which refers to the referenced relation is called referencing relation
and the corresponding attribute is called referencing attribute. The
referenced attribute of the referenced relation should be the primary key for
it.

For Example, STUD_NO in STUDENT_COURSE is a foreign key to
STUD_NO in STUDENT relation.

It may be worth noting that unlike, Primary Key of any given relation,
Foreign Key can be NULL as well as may contain duplicate tuples i.e. it need
not follow uniqueness constraint.

For Example, STUD_NO in STUDENT_COURSE relation is not
unique. It has been repeated for the first and third tuple. However, the
STUD_NO in STUDENT relation is a primary key and it needs to be always
unique and it cannot be null.

Relational Algebra:

Relational algebra is a widely used procedural query language. It collects
instances of relations as input and gives occurrences of relations as output. It
uses various operations to perform this action. SQL Relational algebra query
operations are performed recursively on a relation. The output of these
operations is a new relation, which might be formed from one or more input
relations.

Basic SQL Relational Algebra Operations

A. Unary Relational Operations
SELECT (symbol: o)
PROJECT (symbol: i)
RENAME (symbol: p)

B. Relational Algebra Operations from Set Theory
UNION (v)
INTERSECTION (),
DIFFERENCE (-)
CARTESIAN PRODUCT (x)

C. Binary Relational Operations
JOIN
DIVISION

SELECT (o):

The SELECT operation is used for selecting a subset of the tuples
according to a given selection condition. Sigma(o)Symbol denotes it. It is used as
an expression to choose tuples which meet the selection condition. Select
operator selects tuples that satisfy a given predicate.

op(r) o is the predicate

r stands for relation which is the name of the
table p is prepositional logic

Example 1 O topic = "Database" (Tutorials)
Output - Selects tuples from Tutorials where topic = 'Database’.
Example 2 O topic = "Database" and author = "giri"(Tutorials)

Output - Selects tuples from Tutorials where the topic is 'Database' and

'‘author' is giri.

Example 3 O sales > 50000 (Customers)

Output - Selects tuples from Customers where sales is greater than
50000

Projection(m):

The projection method defines a relation that contains a vertical subset of
Relation.

This helps to extract the values of specified attributes to eliminates
duplicate values. (pi) symbol is used to choose attributes from a relation. This
operator helps you to keep specific columns from a relation and discards the
other columns.

Example of Projection:

CustomerID | CustomerName | Status
1 Google Active

2 Amazon Active

3 Apple Inactive
4 Alibaba Active

Here, the projection of CustomerName and status will give
M CustomerName, Status (Customers)

CustomerName Status
Google Active
Amazon Active
Apple Inactive
Alibaba Active

Rename (p)
Rename is a unary operation used for renaming attributes of a relation.
p (a/b)R will rename the attribute 'b' of relation by 'a'. ,rename® operation is denoted
with small Greek letter rho p
Union operation (u)
UNION is symbolized by U symbol. It includes all tuples that are in tables

A or in B. It also eliminates duplicate tuples. So, set A UNION set B would be
expressed as: The result <- AU B

For a union operation to be valid, the following conditions must hold -
R and S must be the same number of attributes.

Attribute domains need to be compatible.

Duplicate tuples should be automatically removed.

Example:]_[pauthor (Books) U [] author (Articles)

Output: Projects the names of the authors who have either written a

book or an article or both.

0

AU B gives
Example: Consider the following tables. Table AUB
column 1 | column 2
Table A Table B 1 1
column 1 | column 2 column 1 [column 2 1 5

Set Difference (-)
- Symbol denotes it. The result of A - B, is a relation which includes all
tuples that are in A but not in B.
v The attribute name of A has to match with the attribute name in B.
v' The two-operand relations A and B should be either compatible or
Union compatible.
v It should be defined relation consisting of the tuples that are
in relation A, but not in B.

Example: [T author (Books) — [] author (Articles)
Output: Provides the name of authors who have written books
but not articles.
Example A-B
Table A - B
column 1 | column 2
1 2
Intersection

An intersection is defined by the symbol N
A N B Defines a relation consisting of a set of all tuple that are in both
A and B. However, A and B must be union-compatible.

Example: ANB
Table A N B F NN e s
||I | I L |
column 1 |column 2 T "4 {\ . _J:I R ARe)
1 1 S L ‘n._.:{.__.-f“

Cartesian Product(X) in DBMS:
Cartesian Product in DBMS is an operation used to merge columns from
two relations. Generally, a cartesian product is never a meaningful operation
when it performs alone. However, it becomes meaningful when it is followed by
other operations. It is also called Cross Product or Cross Join.
Example: Oauthor = 'tutorialspoint (Books X Articles)
Output: Yields a relation, which shows all the books and articles
written by tutorialspoint.
Example:
O column 2 ='1" (A X B)
Output — The above example shows all rows from relation A and B
whose column 2 has value 1
o column 2 ="'1"' (A X B)
column 1 |column 2
1 1
1 1

Join Operations:
Join operation is essentially a cartesian product followed by a
selection criterion.

JOIN operation also allows joining variously related tuples from

different relations.
Types of JOIN: Various forms of join operation are:
Inner Joins:
v Theta join
v EQUI join
v Natural
join Outer join:
v Left Outer Join
v Right Outer Join
v Full Outer Join
Inner Join:

In an inner join, only those tuples that satisfy the matching criteria are
included, while the rest are excluded. Let's study various types of Inner Joins:
Theta Join:

The general case of JOIN operation is called a Theta join. It is denoted
by symbol ©

Theta join can use any conditions in the selection criteria.

For example: IO
column 1 column 2
1 2
EQUI join:
When a theta join uses only equivalence condition, it becomes a equi join.
For example: P
column 1 column 2
1 1

EQUI join is the most difficult operations to implement efficiently using SQL in an
RDBMS and one reason why RDBMS have essential performance problems.

NATURAL JOIN (w)

Natural join can only be performed if there is a common attribute
(column) between the relations. The name and type of the attribute must
be same.

Cx D
Example: Consider the following two tables Num | Square | Cube
C 2 4 4
D
Num |Square Num | Cube S o 27
2 4 D) S
3 9 3 27

OUTER JOIN

In an outer join, along with tuples that satisfy the matching criteria, we
also include some or all tuples that do not match the criteria.
Left Outer Join(A M B)

In the left outer join, operation allows keeping all tuple in the left relation.
However, if there is no matching tuple is found in right relation, then the
attributes of right relation in the join result are filled with null values.

Left Quder
Jain
1] II——-+

All roan Praw Lafd Tabbe,

Consider the following 2 Tables

Ax B
Y . B Num | Square |Cube
Num ' Num | Cube 2 4 4
‘Square 2) 3 9 9
Z [3 18 u 16 -
319 5 |75
4 16

Right Outer Join: (A M s)

In the right outer join, operation allows keeping all tuple in the right
relation. However, if there is no matching tuple is found in the left relation, then
the attributes of the left relation in the join result are filled with null values.

OO=

A B Al e Pres Right Talbbs,
Num |Cube | Square
2 8 4
3 18 9
5 75 -

Full Outer Join: (A I B)

In a full outer join, all tuples from both relations are included in the
result, irrespective of the matching condition.

Num Cube Square
2 4 8

3 9 18

4 16 -

5 - 75

Summary:

Operation(Symbols) Purpose

Select(o) The SELECT operation is used for selecting a subset
of the tuples according to a given selection condition

Projection(rm) The projection eliminates all attributes of the input

relation but those mentioned in the projection list.

UNION is symbolized by symbol. It includes all tuples
that are in tables A or in B.

Set Difference(-)

- Symbol denotes it. The result of A - B, is a relation
which includes all tuples that are in A but not in B.

Intersection(N)

Intersection defines a relation consisting of a set of all
tuple that are in both A and B.

Cartesian Product(X)

Cartesian operation is helpful to merge columns from
two relations.

Inner Join

Inner join, includes only those tuples that satisfy the
matching criteria.

Theta Join(0) The general case of JOIN operation is called a Theta
join. It is denoted by symbol 6.
EQUI Join When a theta join uses only equivalence condition, it

becomes a equi join.

Natural join can only be performed if there is a
common attribute (column) between the relations.

Outer Join

In an outer join, along with tuples that satisfy the
matching criteria.

Left Outer Join(_{)

In the left outer join, operation allows keeping all
tuple in the left relation.

Right Outer j oin(D([)

In the right outer join, operation allows keeping all
tuple in the right relation.

Full Outer Join (1)

In a full outer join, all tuples from both relations are
included in the result irrespective of the matching
condition.

Relational Calculus:

In contrast to Relational Algebra, Relational Calculus is a non-procedural

query language, that is, it tells what to do but never explains how to do it.

Relational calculus exists in two forms -
A. Tuple Relational Calculus (TRC)
B. Domain Relational Calculus (DRC)

Tuple Relational Calculus (TRC):

Tuple relational calculus works on filtering the tuples based on the specified

Syntax of TRC:

conditions. TRC can be quantified. We can use Existential (3) and Universal
Quantifiers (V).

{T | Conditions)

Returns all tuples T that satisfies a condition.

For instance, if the data need to be represented for the particular
product id of value 10, it can be denoted as T.product_id=10, where T is the
tuple variable that represents the row of the table.

Let us assume the Product table in the database as follows:

Product_id | Product Category | Product Name | Product Unit Price
8 New TV Unit 1 $100
10 New TV Unit 2 $120
12 Existing TV Cabinet $77

Now to represent the relational calculus to return the product name that
has the product id value as 10 from the product table, it can be denoted as
with the tuple variable T.

T.Product Name | Product(T) AND T.Product_id = 10
This relational calculus predicate describes what to do for getting the
resultant tuple from the database. The result of the tuple relational calculus
for the Product table will be:

Product_id | Product Name
10 TV Unit 2

Domain Relational Calculus (DRC):

The domain relational calculus works based on the filtering of the domain
and the related attributes. DRC is the variable range over the domain elements
or the filed values.

In DRC, the filtering variable uses the domain of attributes instead of
entire tuple values (as done in TRC, mentioned above).

Syntax of DRC in DBMS: {cl, c2,...,cn| F(cl, c2,... ,cn)}

The domain attributes in DRC can be represented as C1, C2,..., Cn and
the condition related to the attributes can be denoted as the formula defining
the condition for fetching the F(C1, C2, ...Cn)

Let us assume the same Product table in the database as follows:

Product_id |Product Category |[Product Name |Product Unit Price

8 New TV Unit 1 $100
10 New TV Unit 2 $120
12 Existing TV Cabinet $77

DRC for the product name attribute from the Product table needs
where the product id is 10, It will be demoted as:

The result of the domain relatlonal calculus for the Product table will be

Product_id Product Name
10 TV Unit 2

Some of the commonly used logical operator notations for DRC are A for

AND,V for OR, and q for NOT. imilarly, the mathematical symbol € refers to the relation “is an

N DY R AL R R P TR SRR P

Advantages and disadvantages of relational algebra:

Advantages:

1.Flexibility: Different tables from which information has to be linked and
extracted can be easily manipulated by operators such as project and join to
give information in the form in which it is desired.

2. Precision: The usage of relational algebra and relational calculus in the
manipulation of the relations between the tables ensures that there is no
ambiguity, which may otherwise arise in establishing the linkages in a
complicated network type database.

Disadvantages

1.Performance: If the number of tables between which relationships to be
established are large and the tables themselves effect the performance in
responding to the sql queries.

2. Physical Storage Consumption: With an interactive system an operation
like join would depend upon the physical storage also.

Entity Cluster:

Entity cluster is temporary entity type which is not real because it is not
used in final Entity Relationship Diagram. It is virtual entity which gives benefit
to present the multiple entities and relationship in the ERD.

An Entity cluster is used to combine the multiple entities and relationship
which relate each other into a single entity.

Explain the Steps to Create an ERD:
An Entity Relationship Diagram (ERD) is a visual representation of
different entities within a system and how they relate to each other.

To create the ERD follow the given steps with example.

Y
iy Folo: e Relationship Cardinality Identify
Eotity 1dent1f1catm> Identification > Identification > Attributes LEapte ERD)
S

Example: In a university, a Student enrolls in Courses. A student must be
assigned to at least one or more Courses. Each course is taught by a single
Professor. To maintain instruction quality, a Professor can deliver only one
course.
Step 1) Entity Identification

We have three entities Student,Course,Professor

| Student Course] Professor

Step 2) Relationship Identification
We have the following two relationships
> The student is assigned a course
> Professor delivers a course

T

Step 3) Cardinality Identification
For them problem statement we know that,
> A student can be assigned multiple courses
> A Professor can deliver only one course

E'I—*/ Assigned ,—l"E 'H—” Delivers J_H'

Step 4) Identify Attributes
Now we need to study the files, forms, reports, data currently maintained
by the organization to identify attributes. it's important to identify the attributes
without mapping them to a particular entity. Once, you have a list of Attributes,
you need to map them to the identified entities. Ensure an attribute is to be
paired with exactly one entity.
Entity Primary Key |Attribute
Student |Student ID StudentName
Professor | Employee_ID | ProfessorName

Course Course_ID CourseName
Sbedpm D Loae 1D) Empirgne, 10
E— Mamgned +H— Delvars —H":]
__f.jmmnw CiH R i-'lu'lrhi.ﬂhl-wrw

For Course Entity, attributes could be Duration, Credits, Assignments,
etc. For the sake of ease we have considered just one attribute.

Step 5) Create the ERD A more modern representation of ERD Diagram

AsEgned Defivens
Shudenl_ID e Course £D

Shadanthlamna Ciniraadlnma

¥
A

Unit-4

Q: What is structured query language?

SQL is the interface language between the user and the oracle database.

The American National Standards Institute (ANSI) has accepted SQL as
standard access language for Table Database Management Systems.

o

g

0
X3

/7

0
X3

/7

Q7
0.0

IBM developed SQL in mid of 1970"s.

Oracle incorporated in the year 1979.

SQL used by IBM/DB2 and DS Database Systems.

SQL adopted as standard language for RDBS by ASNI in 1989.

Rules of SQL Statement:

7
°

53

%

5

%

5

%

53

%

53

%

An SQL statement starts with a verb. This verb may have additional
nouns and adjectives.

Each verb is followed by a number of clauses.

Each clause has one or more parameters.

A space separates clauses within an SQL statement.

A comma separates parameters with in a clause.

A semicolon is used to terminate the SQL statement.

Q: What are various SQL Data Types?
It decides what type of data that will be stored inside each column when
creating a table.

1.

NUMBER (P, S): The NUMBER data type is used to store number (fixed or
floating point). = The precision (p) determines the number of total digits.
Scale(s) is omitted then the default is zero.

Ex: percentage number (4, 2)

Here total digits: 4, digits after decimal point: 2

Ex: 98.56
CHAR (Size): A FIXED length string (can contain letters, numbers, and
special characters). The size parameter specifies the column length in
characters - can be from O to 255. Default is 1

. VARCHAR (Size) / VARCHAR2 (Size): A VARIABLE length string (can

contain letters, numbers, and special characters). The size parameter
specifies the maximum column length in characters - can be from O to
65535

DATE: This data type is used to represent date and time. The standard
format is DD-MM-YYYY as in 17-SEP-2009. The supported range is from
'01-01-1000' to '31-12-9999

. LONG: This data type is used to store variable length character strings

containing up to 2GB. Long data can be used to store arrays of binary
data in ASCII form.

Q: What are Integrity Constraints available in ORACLE?

Integrity constraints are a set of rules. It is used to maintain the quality of
information. It ensures that the data insertion, updating, and other processes
have to be performed in such a way that data integrity is not affected. Thus,
integrity constraint is used to guard against accidental damage to the database.

1. NOT NULL: When a column is defined as NOTNULL, then that column
becomes a mandatory column. It implies that a value must be entered into the
column if the record is to be accepted for storage in the table.

Syn: CREATE TABLE Table_Name (column_name data_type (size) NOT NULL,);
Ex: CREATE TABLE student (sno NUMBER(3) NOT NULL, name CHAR(10));

2. UNIQUE: The purpose of a unique key is to ensure that information in the
column(s) is unique i.e. a value entered in column(s) defined in the unique
constraint must not be repeated across the column(s). A table may have many
unique keys.

Syn: CREATE TABLE Table_Name(column_name data_type(size) UNIQUE,);
Ex: CREATE TABLE student (sno NUMBER(3) UNIQUE, name CHAR(10));

3. CHECK: Specifies a condition that each row in the table must satisfy. To
satisfy the constraint, each row in the table must make the condition either
TRUE or unknown (due to a null).

Syn: CREATE TABLE Table_Name(columnname datatype(size) CHECK(logical
expression),);

Ex: CREATETABLE student (snoNUMBER(3),nameCHAR(10),class CHAR(S),
CHECK (class IN(,CSE","CAD","VLSI"));

4. PRIMARY KEY: A field which is used to identify a record uniquely. A column
or combination of columns can be created as primary key, which can be used as
a reference from other tables. A table contains primary key is known as Master
Table.

< It must uniquely identify each record in a table.

< It must contain unique values.
¢ It cannot be a null field.

*

7
*

% It cannot be multi port field.
% It should contain a minimum no. of fields necessary to be called unique.

7

Syn:CREATE TABLE Table_Name(column_name data_type(size) PRIMARY
KEY,.);

Ex: CREATE TABLE faculty (fcode NUMBER(3) PRIMARY KEY, fname
CHAR(10));

5. FOREIGN KEY: It is a table level constraint. We cannot add this at column
level. To reference any primary key column from other table this constraint can
be used. The table in which the foreign key is defined is called a detail table.

The table that defines the primary key and is referenced by the foreign key is
called the master table.

Syn: CREATE TABLE Table_Name(column_name data_type(size) FOREIGN KEY
(column_name) REFERENCES table_name);

6. Default: The default constraint is used to insert a default value into a
column.

Ex: CREATE TABLE student (sno NUMBER(3)NOT NULL, name CHAR(10),
colz varchar2(20) default ,sgcsrc®);

Q: What are various SQL Sub languages and its Commands?

SQL sub Languages used for storing and managing data in relational
database management system (RDMS). It is a standard language for Relational
Database System. It enables a user to create, read, update and delete relational
databases and tables.

There are five types of SQL commands. They are:
1. Data Definition Language (ddl)
2. Data Manipulation Language (DML)
3. Data Retrieval Language (DRL)
4. Transactional Control Language (T.C.L)
5. Data Control Language (D.C.L)

1. Data Definition Language (DDL):
It is used to define structure of a database. Create, Truncate, Drop, Alter,
Rename

A. Create: It is used to create a new table.

Syn: Create table table_name(field_1 data_type(size),field_2 data_type(size),...);
Ex: Create table student(sno number(3),sname char(10),class char(5));

B. Truncate: TRUNCATE command removes all rows from a table, but the table
structure and its columns, constraints, indexes, and so on remain.
Syn: Truncate table table_name;
Ex: Truncate table student;
C. Drop: It is used to delete the structure of a table. it permanently deletes the
records of the table.
Syn: drop table table_name;
Ex: drop table student;
D. Rename: It is used to change the name of the existing database table.
Syn: rename table old_table_name to new_table_name;
Ex: rename table student to std;
E. Alter: It is used to modify or add fields to the structure of the table.

a) Alter Table ...Add...:It is used to add some extra fields to the existing
table.

Syn: alter table table name add(new field_1 data_type(size), new field_2

data_type(size),..);

Ex: alter table std add(address char(10));

b) Alter Table...Modify...:It is used to change the width as well as data type
of the fields of the existing tables.
Syn: alter table table_name modify (field_1 newdata_type(size), field_2
new data_type (size), field_new data_type(size));
Ex: alter table student modify(sname varchar(10),class varchar(5));

c) Alter table drop..:- It is used to delete a column of the existing tables.

Syn: ALTER TABLE table_name DROP COLUMN column_name,;
Ex: Alter table student drop (sname);

2. Data Manipulation Language (DML):
It is used to manipulate the data of a table. Insert, Update, Delete

A. INSERT INTO: It is used to add records to the table.
i) Inserting a single record:
Syn: insert into table_name values (data_1,data_2,..data_n);
Ex: insert into student values (1,"ravi*,"b.sc","palakol®); ii)
Inserting multiple records:
Syn: insert into table name values(&data_1,&data_2,........ ,&data_n);
Ex: insert into student values (&sno, &sname*,"&class”, &address®);
Enter value for sno: 101
Enter value for name: Hemanth
Enter value for class: B.Sc
Enter value for name: Palakol
iii) Inserting all values
Syn:

Ex: . . . ;
insert into relation_name_1 values(value1,valu2,...valuen); insert

into student(101,“rashmitha®,"mca","SKLM");
B. UPDATE-SET-

WHERE: This is used to update the content of a record in a table.
Syn: update table_name set field_name = data where field_name=data;
Ex: update student set sname = ,kumar" where sno=1;

C. DELETE-FROM.: this is used to delete all the records of a table.
a) delete-from: This is used to delete all the records of
table. Syn: delete from table_name;
Ex: delete from student;
b) delete -from-where : this is used to delete a selected record from a
table. Syn: delete from table_name where condition;
Ex: delete from student where sno = 2;

3. Data retrieval language (DRL): It is used to retrieve the data from
the table.
a. select from: It displays all records with all fields.

Syn: select * from table_name;

Ex: select * from dept;

deptno dname loc

10 accounting new york
20 research dallas
30 sales chicago
40 operations boston
b. SELECT FROM: To display a set of fields for all records of table.

Syn: SELECT a set of fields FROM table_name;
Ex: select deptno, dname from dept;

DEPTNO DNAME
10 accounting
20 research
30 sales
40 operations
c. SELECT - FROM -WHERE: This query is used to display a selected set

of fields for a selected set of records of a table.
Syn: SELECT a set of fields FROM table_name WHERE condition;

Ex: select * from dept where deptno<=20;

deptno dname loc
10 accounting new york
20 research dallas

d. SELECT - FROM -GROUP BY: This query is used to group all the records in

a table together for each and every value of a specific key(s) and then display
them for a selected set of fields in the table.

Syn: select a set of fields from table_name group by field_name;
ex: select empno, sum (salary) from emp group by empno;

empno sum (salary)
1 3000
2 4000
3 5000
4 6000

4rows selected.
e. SELECT - FROM -ORDER BY: This query is used to display a selected set of
fields from a table in an ordered manner base on some field.
Syn: select a set of fields from table_name order by field_name;
ex: select empno,ename,job from emp order by job;

empno ename job
4 ravi manager
2 aravind Manager
1 sagar clerk
3 Laki clerk

4rows selected.

4. TRANSATIONAL CONTROL LANGUAGE (TCL): It is used to make the
transactions permanent.

A. commit: this command is used to end a transaction and made them

permanent.

syn: commit;
Ex:commit;

B. save point: save points are like marks to divide a very lengthy transaction
to smaller once. They are used to identify a point in a transaction to
which we can latter role back.

syn: save point id;
Ex: save point xyz;
C. Roll back: a role back command is used to undo the current
transactions.
syn: 1. Rollback(current transaction can be roll back)
2. Rollback to save point id;
ex: Rollback;
Rollback to save point xyz;

5. DATA CONTROL LANGUAGE (D.C.L): DCL provides users with privilege
commands
a. grant: the grant command allows granting various privileges to other
users. syn: grant privileges on table_name to user_name;
ex: grant select, update on emp to hemanth;
b. revoke: it is used to withdraw the privileges that has been granted to the
user.
syn: revoke privileges on table_name from user_name;
ex: revoke select, update on emp from hemanth;

6: Explain about views in SQL.

Views in SQL are considered as a virtual table. A view also contains rows
and columns. View is a query that is stored as an object. It is similar to a table
but it does not be stored in the database.

To create the view, we can select the fields from one or more tables
present in the database. A view can either have specific rows based on certain
condition or all the rows of a table.

Characteristics of views:

e We can use the name of the view anywhere in a SQL statement.
e Views are dynamically updated.

e Views provide a level of security in the database.

e Views may be used as the basis for reports.

Student Detail

STU_ID |NAME ADDRESS
1 Stephan |Delhi
2 Kathrin Noida
3 David Ghaziabad
4 Alina Gurugram

Student_Marks

STU_ ID | NAME MARKS |AGE
1 Stephan |97 19
2 Kathrin 86 21
3 David 74 18
4 Alina 90 20
S John 96 18

Creating view:
A view can be created using the CREATE VIEW statement. We can create
a view from a single table or multiple tables.
Syntax: CREATE VIEW view_name AS SELECT columnl, column?2..... FROM
table_name WHERE condition;

Creating View from a single table:
CREATE VIEW DetailsView AS SELECT NAME,ADDRESS FROM
Student_Details WHERE STU_ID < 4;
Just like table query, we can query the view to view the data.
SELECT * FROM DetailsView;
Output:
NAME ADDRESS
Stephan | Delhi
Kathrin | Noida
David Ghaziabad

Creating View from multiple tables:
View from multiple tables can be created by simply include multiple
tables in the SELECT statement.
In the given example, a view is created named MarksView from two tables
Student_Detail and Student Marks.
Query:
CREATE VIEW MarksView AS
SELECT Student_Detail. NAME, Student_Detail.
ADDRESS, Student_Marks.MARKS FROM Student_Detail, Student_Mark
WHERE Student_Detail. NAME = Student_Marks.NAME;
To display data of View MarksView:

SELECT * FROM MarksView;

NAME ADDRESS |MARKS
Stephan | Delhi 97
Kathrin | Noida 86
David Ghaziabad |74
Alina Gurugram |90

Deleting View:
A view can be deleted using the Drop View statement.
Syntax: DROP VIEW view_name;

Example:
If we want to delete the View MarksView, we can do this as:
DROP VIEW MarksView;

Q: Explain about SQL JOINs?

A JOIN clause is used to combine rows from two or more tables, based
on a related column between them by using values common to each.

Here, it is noticeable that the join is performed in the WHERE clause.
Several operators can be used to join tables, such as =, <, >, <>, <=, >=|=
BETWEEN, LIKE, and NOT; they can all be used to join tables. However,
the most common operator is the equal to symbol.

There are different types of joins available in SQL -
INNER JOIN - The INNER JOIN keyword selects records that have
matching values in both tables.
Syntaxe The basic syntax of the INNER JOIN is as follows.
SELECT tablel.columnl, table2.column?2...
FROM tablel
INNER JOIN table2
ON tablel.common_field = table2.common_field;

Example: Consider the following two tables.
Table 1- CUSTOMERS Table is as follows.

+ o Fom Fom - R T — +o———————— +
| OID | DATE | CUSTOMER_ID | AMOUNT |
S S Fom e ——

| 102 | 2009-10-08 00:00:00 | 3| 3000 |

| 100 | 2009-10-08 00:00:00 | 3| 1500 |

| 101 | 2009-11-20 00:00:00 | 2| 1560 |

| 103 | 2008-05-20 00:00:00 | 4| 2060 |

_____ RS S
Table 2 - ORDERS Table is as follows.

S S S — A +

| ID | NAME | AGE | ADDRESS | SALARY |

S S — S S A +

| 1] Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22|MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

S R S A +

Now, let us join these two tables using the INNER JOIN as follows —
SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS

INNER JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result.

tommm o R S +
| ID | NAME | AMOUNT | DATE |

S - A S +
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |
S - R oo +

LEFT JOIN - The LEFT JOIN keyword returns all records from the left table
(tablel), and the matching records from the right table (table2). The result is O
records from the right side, if there is no match.
EX: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT
JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

LEFT b2

RIGHT JOIN - returns all rows from the right table, even if there are no
matches in the left table.

The RIGHT JOIN keyword returns all records from the right table (table2),
and the matching records from the left table (tablel). The result is O records
from the left side, if there is no match.

EX:SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS
RIGHT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

RRGHT 01N

T
/ o
N
FULL JOIN - The FULL OUTER JOIN keyword returns all records when there is
a match in left (tablel) or right (table2) table records.

EX:SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS
FULL JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER _ID;

FLULL OUTER JOIM

SELF JOIN: A self join is a regular join, but the table is joined with itself.
EX: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS
SELF JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

CARTESIAN JOIN: - returns the Cartesian product of the sets of records from
the two or more joined tables

Q: What are SQL Set Operations?
The SQL Set operation is used to combine the two or more SQL
SELECT statements.
Types of Set Operation 5 ==

1. Union Uninn Unloa AL
2. UnionAll o
3. Intersect
4. Minus Set
Qntiun '
lalciasil Misus
d b
= €

1. Union: The SQL Union operation is used to combine the result of two or
more SQL SELECT queries. The union operation eliminates the duplicate
rows from its result set.

In the union operation, all the number of data type and columns must
be same in both the tables on which UNION operation is being applied.
Syntax:

SELECT column_name FROM tablel UNION SELECT column_name FROM
table 2;Example:

The First table

ID |[NAME

1 Jack

2 Harry

3 Jackson

The Second table

ID NAME

3 Jackson
4 Stephan
5 David

Union SQL query will be:
SELECT * FROM First UNION SELECT * FROM
Second; The result set table will look like:
ID |NAME
Jack
Harry
Jackson
Stephan
David

ull P WIN|+—

2. Union All:
Union All operation is equal to the Union operation. It returns the set
without removing duplication and sorting the data.

Syntax:

SELECT column_name FROM tablel

UNION ALL

SELECT column_name FROM table2;
Example:

SELECT * FROM First UNION ALL SELECT * FROM
Second; The result set table will look like:
ID | NAME
Jack
Harry
Jackson
Jackson
Stephan
David

Ul DWW WIN|+—

3. Intersect:
It is used to combine two SELECT statements. The Intersect operation
returns the common rows from both the SELECT statements.
In the Intersect operation, the number of data type and columns must
be the same.
It has no duplicates and it arranges the data in ascending order
by default.
Syntax:
SELECT column_name FROM tablel
INTERSECT
SELECT column_name FROM table2;
Example:
SELECT * FROM First INTERSECT SELECT * FROM
Second; The result set table will look like:
ID |NAME
3 Jackson

4. Minus:

It combines the result of two SELECT statements. Minus operator is used
to display the rows which are present in the first query but absent in the second
query. It has no duplicates and data arranged in ascending order by default.
Syntax:

SELECT column_name FROM tablel

MINUS

SELECT column_name FROM table2;

Example

SELECT * FROM First MINUS SELECT * FROM

Second; The result set table will look like:

ID |[NAME
1 Jack
Harry

Q: What is mean by SQL - Sub Query?
A Sub query or Inner query or a Nested query is a query within another
SQL query and embedded within the WHERE clause.

A sub query is used to return data that will be used in the main query as
a condition.

Sub queries can be used with the SELECT, INSERT, UPDATE, and
DELETE statements along with the operators like =, <, > >= <= IN,
BETWEEN, etc.

There are a few rules that sub queries must follow:
< Sub queries must be enclosed within parentheses.
» A sub query can have only one column in the SELECT clause:
» Sub queries that return more than one row can only be used with
multiple value operators such as the IN operator.
< The SELECT list cannot include any references to values that evaluate to
a BLOB, ARRAY, CLOB, or NCLOB.
Sub queries with the SELECT Statement
Syntax: SELECT column_name [, column_name | FROM tablel [, table2]
WHERE column_name OPERATOR
(SELECT column_name [, column_name | FROM tablel [, table2

*

X4

>

*

oo

| [WHERE))
Example:

Consider the CUSTOMERS table having the following records —
+ -t ——————— e Fom—————— R Fem————————
| ID | NAME | AGE | ADDRESS | SALARY |
F et Fee—— F o S Fem———
| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |
| 2 | Khilan | 25 | Delhi | 1500.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
| 4 | Chaitali | 25 | Mumbai | 6500.00 |
| 5 | Hardik | 27 | Bhopal | 8500.00 |
| 6 | Komal | 22| MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
S S S— S — S S— S — S S——

Now, let us check the following sub query with a SELECT statement.
SQL> SELECT * FROM CUSTOMERS WHERE ID IN (SELECT ID FROM
CUSTOMERS WHERE SALARY > 4500) ;

This would produce the following result.

PSS — R — . S
| ID | NAME | AGE | ADDRESS | SALARY |
S e — R Fommmmeee
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
S R — R R

Q: What are SQL Aggregate Functions?
SQL aggregation function is used to perform the calculations on multiple
rows of a single column of a table. It returns a single value.
It is also used to summarize the data.

Types of SQL Aggregation Function

- = = -
A A0 Aggregation

Fandios

o -___.-' "-\.M-. &
- e b e
- -)
¥ s o -
- e e
o o+ w, -
— —— A T -
{ COONT % 7 SUM ! AV MAK BN

1. COUNT FUNCTION

COUNT function is used to Count the number of rows in a database table.
It can work on both numeric and non-numeric data types.

COUNT function uses the COUNT (*) that returns the count of all the rows
in a specified table. COUNT (*) considers duplicate and Null.

Syntax: COUNT(*) or COUNT([ALL | DISTINCT] expression)

Example: SELECT COUNT(*) FROM STUDENT;

2. SUM Function:

Sum function is used to calculate the sum of all selected columns. It
works on numeric fields only.

Syntax: SUM() or SUM([ALL | DISTINCT] expression)

Example: SELECT AVG(COST) FROM PRODUCTS;
3. AVG function

The AVG function is used to calculate the average value of the numeric
type. AVG function returns the average of all non-Null values.

Syntax: AVG() or AVG([ALL |DISTINCT] expression)

Example: SELECT AVG(COST) FROM PRODUCT_MAST;
4. MAX Function:

MAX function is used to find the maximum value of a certain column.
This function determines the largest value of all selected values of a column.

Syntax: MAX() or MAX([ALL | DISTINCT] expression)

Example: SELECT MAX(RATE) FROM PRODUCT_MAST;
5. MIN Function:

MIN function is used to find the minimum value of a certain column. This
function determines the smallest value of all selected values of a column.

Syntax: MIN() or MIN([ALL | DISTINCT] expression)

Example: SELECT MIN(RATE) FROM PRODUCT_MAST;

Q: What is mean by Embed SQL?

Embedded SQL is a method of inserting inline SQL statements or queries
into the code of a programming language, which is known as a host language.
Because the host language cannot parse SQL, the inserted SQL is parsed by an
embedded SQL preprocessor.

Embedded SQL is not supported by all relational database management
systems (RDBMS). Oracle DB and PostgreSQL provide embedded SQL support.

UNIT V

PL/SQL
Syllabus: PL/SQL: Introduction, Shortcoming in SQL, Structure of PL/SQL,
PL/SQL Language Elements, Data Types, Operators Precedence, Control
Structure, Steps to Create a PL/SQL, Program, Iterative Control, Cursors, Steps
to create a Cursors, Procedure, Function, Packages, Exceptions Handling,
Database Triggers, Types of Triggers.

Q: What is PL/SQL?

PL/SQL stands for Procedural Language extension of SQL. PL/SQL is a
combination of SQL along with the procedural features of programming
languages. It was developed by Oracle Corporation in the early 90“s to enhance the
capabilities of SQL.

PL/SQL adds many procedural constructs to SQL language to overcome
some limitations of SQL. It is a standard and portable language for Oracle
Database development. It is an embedded language and only executes in an
Oracle Database.

Q: PL/SQL architecture
The following picture illustrates the PL/SQL architecture:

FLS0L Engine

S i gl :m:::%

PLIECL ook [P I BTG E L

S0

SO Sestarians Esscaics %

Ormcls Datsbisaes Server

PL/SQL
engine is in charge of compiling PL/SQL code into byte-code and executes the
executable code. The PL/SQL engine can only be installed in an Oracle
Database server. Once you submit a PL/SQL block to the Oracle Database
server, the PL/SQL engine collaborates with the SQL engine to compile and
execute the code.

Q: Structure of PL/SQL:
PL/SQL is a block-structured language whose Declarsrion Ssoricn
code is organized into blocks. Block is a smallest piece

of PL/SQL code having logically related statements Sl R T 1
and declarations. A PL/SQL block consists of three —

sections: declaration, executable, and exception- m
handling sections. In a block, the executable section is

ERi

mandatory while the declaration and
exception-handling sections are optional. Each PL/SQL program consists of
SQL and PL/SQL statements which from a PL/SQL block.
A PL/SQL Block consists of three sections:

a. The Declaration section (optional).

b. The Execution section (mandatory).

. The Exception (or Error) Handling section (optional).

. Declaration Section: The Declaration section of a PL/SQL Block starts
with the reserved keyword DECLARE. This section is optional and is used
to declare any placeholders like any of Variables, Constants and Records,
which stores data temporarily. Cursors are also declared in this section.
Which are used to manipulate data in the execution section.
. Execution Section: The Execution section of a PL/SQL Block starts with
the reserved keyword BEGIN and ends with END. This is a mandatory
section and is the section where the program logic is written to perform
any task. The executable section must have at least one executable
statement, even if it is the NULL statement which does nothing.
. Exception Section: The Exception section of a PL/SQL Block starts with
the reserved keyword EXCEPTION. This section is optional. Any errors in
the program can be handled in this section, so that the PL/SQL Blocks
terminates gracefully. If the PL/SQL Block contains exceptions that
cannot be handled, the Block terminates abruptly with errors.

Every statement in the above three sections must end with a
semicolon .
PL/SQL blocks can be nested within other PL/SQL blocks.
Comments can be used to document code.

This is how a sample PL/SQL Block looks.

DECLARE
Variable declaration
BEGIN
Program Execution
EXCEPTION
Exception handling
END;
PL/SQL anonymous block
The following example shows a simple PL/SQL anonymous block with

one executable section.

DBMS_OUTPUT.put _line
END;
In The above program executable section calls the DMBS_OUTPUT. PUT_

LINE procedure to display the "Hello World" message on the screen.
Execute a PL/SQL anonymous block using SQL*Plus

Once you have the code of an anonymous block, you can execute it
using SQL*Plus, which is a command-line interface.

First, connect to the Oracle Database server using a username and password.
Second, turn on the server output using the SET SERVEROUTPUT ON command so
that the DBMS_OUTPUT.PUT_LINE procedure will display text on the screen.
Q: PL/SQL Language Elements:

Like other programming languages PL/SQL also have specific character
sets, operators, indicators, punctuations, identifiers, comments, etc. In the
following sections we will discuss about various language elements of PL/SQL.

A. Character sets:

A PL/SQL program consists of text having specific set of characters.
Character set may include the following characters:

iy Alphabets, both in upper case [A-Z] and lower case [a—z]

®,
o

Numeric digits [0-9]

I characters () + = * /<=1 ~"3:._@%, _#$&[(/?(]

®,
o

Blank spaces, tabs, and carriage returns.
Note: PL/SQL is not case sensitive

B. Lexical Units
A line of PL/SQL program contains groups of characters known as lexical
units, which can be classified as follows:
a) Delimiters
b) Identifiers
c) Literals
d) Comments

A. Delimiters:

A delimiter is a simple or compound symbol that has a special
meaning to PL/SQL. Simple symbol consists of one character, while
compound symbol consists of more than one character.

For example, to perform the addition and exponentiation operation in
PL/SQL, simple symbol delimiter + and compound symbol delimiter ** is
used, respectively. PL/SQL supports following

Simple symbol delimiters:

+=[=><%_, ()@

Compoqﬂrﬁ;ﬁc}@s’yn”l«lgol delimiters legal in PL/SQL are as follows:
B. Identifiers:

Identifiers are used in the PL/SQL programs to name the PL/SQL
program items as constants, variables, cursors, cursor variables,
subprograms, etc.

Identifiers can consists of alphabets, numerals, dollar signs,
underscores, and number signs only. Any other characters like hyphens,
slashes, blank spaces, etc. are illegal.

An identifier must begin with an alphabetic letter. An identifier
cannot contain more than 30 characters.

Ex: A, Al, Share $price, e_mail, phone#

C. Literals:
A literal is an explicitly defined character, string, numeric, or Boolean
value, which is not represented by an identifier.

Ex: integer numeric literals: 100 006 -10 0 +10

A real literal: 0.0 -19.0 3.56219 +43.99 .6 7. -4.56
Character Literals: A character literal is an individual
character enclosed by single quotes

(apostrophes).
Ex: A", ,@" .5 .,.,7".,." .(,
String Literals: A string literal is enclosed within
single
quotes and may consist of one or more
characters.

Ex: Good Morning!”
“04-MAY-00”
Boolean Literals: Boolean literals are the predefined values
TRUE, FALSE, and NULL. Boolean literals
are values, not strings.

D.Comments:

Comments are used in the PL/SQL program to improve the readability
and understandability of a program. A comment can appear anywhere in the
program code. The compiler ignores comments. A PL/SQL comment may be
a single-line or multiline.

Single-Line Comments: Single-line comments begin with a double

hyphen (- -) anywhere on a line and extend to the
end of the line.
Ex: -- start calculations

Multiline Comments: Multiline comments begin with a slash-asterisk
(/*) and end with an asterisk slash(*/), and can
span multiple lines.

Ex:/* HelloWorld!This is an example of multiline comments in PL/SQL */

Q: Variables and Constants:

Variables and constants can be used within PL/SQL block, in procedural
statements and in SQL statements. These are used to store the values. As the
program executes, the values of variables can change, but the values of
constants cannot. However, it is must to declare the variables and constants,
before using these in executable portion of PL/SQL.

Declaration: Variables and constants are declared in the Declaration section of
PL/SQL block. These can be any of the SQL data type like CHAR,
NUMBER,DATE, etc.

Variables Declaration: The syntax for declaring a variable is as follows:
Syn: identifier datatype;
Ex: DECLARE

Name VARCHAR2(10);

Age NUMBER(2);

Initializing the Variable: By default variables are initialized to NULL at
the time of declaration. If we want to initialize the variable by some other
value, syntax would be as follows:
Syn: Identifier data type:= value;
Or
Identifier data type DEFAULT value;
Ex: Joining date DATE := 01-JULY-99; (or)
Joining date DATE DEFAULT 01-JULY-99;
Constants Declaring: Declaration of constant is similar to declaration of
variable, except the keyword CONSTANT precedes the data type and it
must be initialized by some value.
Syn: identifier CONSTANT datatype := value;
Ex: To define the age limit as a constant, having value 30; the
declaration statement would be as follows:
Age limit CONSTANT NUMBER := 30;
Q: Operators Precedence:

The operations within an expression are done in a particular order
depending on their precedence (priority).

Below Table lists the operator®s level of precedence from top to bottom.
Operators listed in the same row have equal Precedence. Operators with higher
precedence are applied first, but if parentheses are used, expression within
innermost parenthesis is evaluated first.

Operator operation

** NOT exponentiation, logical negation

+, - identity, negation

*/ multiplication, division

+, = || addition, subtraction, concatenation
=, 1=, <, >, <=, >=1S NULL, comparison

LIKE, BETWEEN, IN

AND Conjunction

OR Disjunction

Q: Control Structure
Control Structure controls the flow of process. Control structure is
broadly divided into three categories:

Control Structures

pe R

Decision control [terative control | Sequential control

A. Decision Control:

A Decision control structure tests a condition to find out whether it is true
or false and accordingly executes the different blocks of SQL statements.
Conditional control is generally performed by IF statement.

There are three forms of IF statement.

1. IF-THEN,
2. IF-THEN-ELSE,
3. IF-THEN-ELSEIF.

IF-THEN:

It is the simplest form of IF condition. The syntax for this statement is as
follows:

Syn: IF condition THEN

Sequence of statements
END IF;
Ex: IF A >B THEN
HIGH := A;
ENDIF;
IF-THEN-ELSE:

If the condition is TRUE then the control executes the statement 1,
otherwise the control executes statement?2

Syn: IF condition THEN

sequence of statements1

ELSE
sequence of statements?2

END IF;

Ex: IF A >B THEN

HIGH := A;

ELSE
HIGH := B;

ENDIF;

IF-THEN-ELSIF: In this structure multiple conditions are involved
Syn: IF conditionl THEN
sequence of statements1
ELSIF condition2 THEN
sequence of statements2
ELSE
sequence of statements3
END IF;
B. Iterative Control:

In iterative control a group of statements are executed repeatedly till
certain condition is true, and control exits from loop to next statement when the
condition becomes false. There are mainly three types of loop statements:

1. LOOP,

2. WHILE-LOOP,

3. FOR-LOOP.
LOOP: LOOP is the simplest form of iterative control. It encloses a sequence of
statements between the keywords LOOP and END LOOP. The general syntax for
LOOP control is as follows:

Syn: LOOP
Sequence of statements

END LOOP;

With each iteration of the loop, the sequence of statements gets
executed, then control reaches at the top of the loop. But a control
structure like this gets entrapped into infinite loop. To avoid this it is
must to use the key word EXIT and EXIT-WHEN.

LOOP - EXIT:

An EXIT statement within LOOP forces the loop to terminate
unconditionally and passes the control to next statements. The general syntax
for this is as follows:

Syn: LOOP
IF conditionl THEN
Sequence of statements1
EXIT;
ELSIF condition2 THEN
Sequence of statements2
EXIT
ELSE
Sequence of statements3
EXIT;
END IF;

END LOOP;

LOOP - EXIT WHEN

The EXIT-WHEN statement terminates a loop conditionally. When the
EXIT statement is encountered, the condition in the WHEN clause is evaluated.
If the condition is true, the loop terminates and control passes to the next
statement after the loop. The syntax for this is as follows:

Syn: LOOP

EXIT WHEN condition
Sequence of statements
END LOOP

WHILE-LOOP:

The WHILE statement with LOOP checks the condition. If it is true then
only the sequence of statements enclosed within the loop gets executed. Then
control resumes at the top of the loop and checks the condition again. The
process is repeated till the condition is true. The control passes to the next
statement outside the loop for FALSE or NULL condition.

Syn:
WHILE condition LOOP
Sequence of statements
END LOOP;
FOR-LOOP:

FOR loops iterate over a specified range of integers. The range is part of
iteration scheme, which is enclosed by the keywords FOR and LOOP. A double
dot (..) serves as the range operator. The syntax is as follows:

Syn: FOR counter IN lower limit .. higher limit LOOP
sequence of statements
END LOOP;

The sequence of statements is executed once for each integer in the range.
After every iteration, the loop counter is incremented.

C. Sequential Control:

The sequential control unconditionally passes the control to specified
unique label; it can be in the forward direction or in the backward direction. For
sequential control GOTO statement is used.

Syntax: GOTO label;

<<label>>
Statement

Q: Steps to Create a PL/SQL Program
1. Open notepad file on oracle as shown in the syntax:
Syn: SQL>edit filename;
2. Type the required PL/SQL program and save it.
Now exit from the notepad.

w

4. Type the following syntax on sql prompt to execute the
program Syn: SQL>START filename;

Q: What are Cursors?

A cursor is a temporary work area created in the system memory when a
SQL statement is executed. A cursor contains information on a select statement
and the rows of data accessed by it. This temporary work area is used to store
the data retrieved from the database, and manipulate this data. A cursor can
hold more than one row, but can process only one row at a time. The set of rows
the cursor holds is called the active set.

There are two types of cursors in PL/SQL:
a) Implicit cursors:

These are created by default when DML statements like, INSERT,
UPDATE, and DELETE statements are executed. They are also created when a
SELECT statement that returns just one row is executed.

Oracle provides few attributes called as implicit cursor attributes to check
the status of DML operations. The cursor attributes available are %FOUND,
%NOTFOUND, %ROWCOUNT, and %ISOPEN.

Example:

When you execute INSERT, UPDATE, or DELETE statements the cursor
attributes tell us whether any rows are affected and how many have been
affected.

When a SELECT... INTO statement is executed in a PL/SQL Block,
implicit cursor attributes can be used to find out whether any row has been
returned by the SELECT statement. PL/SQL returns an error when no data is
selected.

Attributes Return Value Example
%FOUND The return value is TRUE, if the DML SQL%FOUND

statements like INSERT, DELETE and
UPDATE affect at least one row and if
SELECTINTO statement return at least
one row.

The return value is FALSE, if DML statements

like INSERT, DELETE and UPDATE do not

affect row and if SELECT....INTO statement

%NOTFOUND The return value is FALSE, if DML statements SQL%NOTFOUND

121~ TATOTI T T M T TV wacn A TTNMMATMTY ke 14
IIAC TINOLVNTL, DU Adllu vl iy Aat lcast

one row and if SELECTINTO statement
return at least one row.

The return value is TRUE, if a DML statement

121 - TATOTATHY/T T\TOT TV/T'\ T PR | TTTDOT AMT\TY
1IAC 1INOLVIND, Jlylyivlly aAlilu vl uniily bI.U 11UL

affect even one row and if SELECTINTO
statement does not return a row.

%ROWCOUNT Return the number of rows affected by the SQL%ROWCOUNT

T\NAT am~ INTOTIATOHTY. MTT TV TTDOT AT
LJIVIL Ul.l\.,l Cl.LJ.ULlD IINOLVINTG,, DLUwuis1r1y, Ul uniiiy,

For Example: Consider the PL/SQL Block that uses implicit cursor attributes
as shown below:
DECLARE var_rows number(5);
BEGIN
UPDATE employee
SET salary = salary + 1000;
IF SQL%NOTFOUND THEN
dbms_output.put_line('None of the salaries where updated');
ELSIF SQL%FOUND THEN
var_rows := SQL%ROWCOUNT;
dbms_output.put_line('Salaries for ' || var_rows || ‘'employees are
updated');
END IF;
END;

In the above PL/SQL Block, the salaries of all the employees in the
.employee“ table are updated. If none of the employee®s salary are updated we get a
message 'None of the salaries where updated'. Else we get a message like for
example, 'Salaries for 1000 employees are updated' if there are 1000 rows in
.employee" table.

b) Explicit cursors:

They must be created when you are executing a SELECT statement that
returns more than one row. Even though the cursor stores multiple records,
only one record can be processed at a time, which is called as current row.
When you fetch a row the current row position moves to next row.

An explicit cursor is defined in the declaration section of the PL/SQL
Block. It is created on a SELECT Statement which returns more than one row.
We can provide a suitable name for the cursor.

The General Syntax for creating a cursor is as given below:
CURSOR cursor_name IS select_statement;
Here cursor _name — A suitable name for the cursor.

select_statement — A select query which returns multiple

rows. How to use Explicit Cursor?
There are four steps in using an Explicit Cursor.
DECLARE the cursor in the declaration section.
* OPEN the cursor in the Execution Section.
2
FETCH the data from cursor into PL/SQL variables or records in the
Execution Section.
0’0
g{..O?E the cursor in the Execution Section before you end the PL/SQL
ock.

Declaring a Cursor in the Declaration Section:
DECLARE
CURSOR emp_cur IS
SELECT * FROM emp_tbl WHERE salary > 5000;

In the above example we are creating a cursor ,emp_cur® on a query which
returns the records of all the employees with salary greater than 5000. Here
,emp_tbl" in the table which contains records of all the employees.

How to access an Explicit Cursor?
These are the three steps in accessing the cursor.
1) Open the cursor.
2) Fetch the records in the cursor one at a time.
3) Close the cursor.
General Syntax to open a cursor is: OPEN cursor_name;
General Syntax to fetch records from a cursor is:
FETCH cursor_name INTO record_name;
OR
FETCH cursor_name INTO variable_list;
General Syntax to close a cursor is:

CLOSE cursor_name;

When a cursor is opened, the first row becomes the current row. When
the data is fetched it is copied to the record or variables and the logical pointer
moves to the next row and it becomes the current row. On every fetch
statement, the pointer moves to the next row. If you want to fetch after the last
row, the program will throw an error. When there is more than one row in a
cursor we can use loops along with explicit cursor attributes to fetch all the
records.

Points to remember while fetching a row:

e We can fetch the rows in a cursor to a PL/SQL Record or a list of
variables created in the PL/SQL Block.

e If you are fetching a cursor to a PL/SQL Record, the record should have
the same structure as the cursor.

e If you are fetching a cursor to a list of variables, the variables should be
listed in the same order in the fetch statement as the columns are present
in the cursor.

General Form of using an explicit cursor is:
DECLARE

variables;
records;
create a cursor;
BEGIN
OPEN cursor;
FETCH cursor;
process the records;
CLOSE cursor;
END;
Lets Look at the example belowExample 1:
DECLARE
emp_rec emp_tbl%rowtype;
CURSOR emp_cur IS
SELECT *
FROM
WHERE salary > 10;
BEGIN
OPEN emp_cur;
FETCH emp_cur INTO emp_rec;
dbms_output.put_line(emp_rec.first_ name| |'
'| | emp_rec.last_name);
CLOSE emp_cur;
END;

In the above example, first we are creating a record ,emp_rec" of the same
structure as of table ,emp_tbl" in line no 2. We can also create a record with a cursor
by replacing the table name with the cursor name. Second, we are declaring a
cursor ,emp_cur® from a select query in line no 3 - 6. Third, we are opening the
cursor in the execution section in line no 8. Fourth, we are fetching the cursor
to the record in line no 9. Fifth, we are displaying the first name and last_name
of the employee in the record emp_rec in line no 10. Sixth, we are closing the
cursor in line no 11.

What are Explicit Cursor Attributes?

Oracle provides some attributes known as Explicit Cursor Attributes to
control the data processing while using cursors. We use these attributes to
avoid errors while accessing cursors through OPEN, FETCH and CLOSE
Statements.

When does an error occur while accessing an explicit cursor?

a) When we try to open a cursor which is not closed in the previous operation.
b) When we try to fetch a cursor after the last operation.

These are the attributes available to check the status of an explicit cursor.

Attributes Return values Example
%FOUND TRUE, if fetch statement returns at least |Cursor_name%FOUND
one row.

FALSE, if fetch statement doesn®t return a
TOW.

%NOTFOUND TRUE, , if fetch statement doesn“t return a Cursor_name%NOTFOUND
TOW.

FALSE, if fetch statement returns at least
Oone row. Cursor_name%ROWCOUNT

%ROWCOUNT The number of rows fetched by the fetch
statement

If no row is returned, the PL/SQL Cursor_name%ISNAME

statement returns an error.

%ISOPEN TRUE, if the cursor is already open in the
program
FALSE, if the cursor is not opened in the
program.

Both implicit and explicit cursors have the same functionality, but
they differ in the way they are accessed.

Q: Explain Procedures
A procedure is a subprogram that performs some specific task, and stored
in the data dictionary.
A procedure must have a name, so that it can be invoked or called by any
PL/SQL program that appears within an application.
Procedures can take parameters from the calling program and perform
the specific task.

Benefits of Procedures and Functions
Stored procedures and functions have many benefits
It modifies one routine to affect multiple applications.
It modifies one routine to eliminate duplicate testing.
It ensures that related actions are performed together, or not at all,
bydoing the activity through asingle path.
It avoids PL/SQL parsing at runtime by parsing at compile time.
It reduces the number of calls to the database and database network
trafficby bundling the commands.
Defining and Creating Procedures
A procedure consists of two parts:
1. Specification
2. body.
The specification starts with keyword PROCEDURE and ends with parameter
list or procedure name.
The procedures may accept parameters or may not.
Procedures that do not accept parameters are written parentheses.
The procedure body starts with the keyword IS and ends with keyword END.
The procedure body is further subdivided into three parts:
1. Declarative part which consists of local declarations placed between
keywords IS and BEGIN.

The syntax for creating a procedure is follows:

CREATE OR REPLACE PROCEDURE procedure_ name
[(argument {IN, OUT, IN OUT} data type,.........)] {IS,
AS} [local variable declarations]
BEGIN
executable statements
EXCEPTION
exception handlers
END [procedure name|;
Here
Create: Creates a new procedure, if a procedure of same name alreadyexists, it
gives an error.
Replace: Creates a procedure, if a procedure of same name already exists,it
replace the older one by the newprocedure definition.
Argument: It is the name of the argument to the procedure.
IN: Specifies that a value for the argument must be specified when callingthe
procedure.
OUT: Specifies that the procedure pass a value for this argument back toits
calling environment afterexecution.
IN OUT: Specifies that a value for the argument must be specified whencalling
the procedure and that theprocedure passes a value for this argumentback to
its calling environment after execution. If no value isspecified then ittakes the
default value IN.
Datatype: It is the unconstrained datatype of an argument. It supportsany data
type supported by PL/SQL.No constraints like size constraints orNOT NULL
constraints can be imposed on the data type. However, youcanput on the size
constraint indirectly.
Ex:
CREATE OR REPLACE PROCEDURE greetings
AS BEGIN
dbms_output.put_line('Hello World!');
END;
/GG SO] x

Fie Eft Search Opbons Help

SOL> DESC EWP: *
Hame Hully Type &
EHFID HOT HULL UARCHARZ(d)
EHPHAME UARCHARZ{20)
TaL HUMBER(&)

S0L> CREATE OR REPLACE PROCEDURE ralse sal
(EID IN ENP_ENPIDRTVPE)

I%

BEGIN

urgRlE EAr

EET SAL = SAL = 4.2% WHERE EHPID=EID;
EHD raise salj

!

B B W RS R

PFrocedure created.

soL> | w
AL ¥

Executing/Invoking a Procedure

The syntax used to execute a procedure depends on the environment from
which the procedure is being called. From within SQLPLUS, a procedure can be
executed by using the EXECUTE command, followed by the procedure name.
Any arguments to be passed to the procedure must be enclosed in parentheses
following the procedure name.

Syn: EXECUTE procedurename(paramaters);
Removing a Procedure

To remove a procedure completely from the database, following command
is used:

Syn: DROP PROCEDURE < procedurename >;
Q: What is a Function:

A Function is similar to procedure except that it must return one and only
one value to the calling program.

The exact syntax for defining a function is given below

CREATE OR REPLACE FUNCTION [schema.| functionname

[(argument IN datatype,)] RETURN datatype
{IS,AS} [local variable declarations];

BEGIN
executable statements;

EXCEPTION

exception handlers;

END [functionname];

Thus a function has two parts: function specification and function body.
The function specification begins with keyword FUNCTION and ends with
RETURN clause which indicates the data type of the value returned by the
function.
Function body is enclosed between the keywords IS and END. Sometimes END
is followed by function name, but this is optional. function body also is
composed of three parts:

declarative part,

executablepart,

Error/exception handling part (optional).

Fle Edt Seach Options Help

gL> SELECT = FROM EMP; %
| B

HPID EMPHAME SAL 3

181 KARTHIKEYAH 6258

102 AMAND 2500

183 RAJA 1900

SOL> SELECT GET_SAL("E182°) FROM DUAL ;
GET_SAL(*E102")

2508

sqL> |]
<]al i

Fis Edt Search Oplions Help
SOL> DESC EMWP;

Hame Hull? Type

EMPID HOT HULL URRCHARZ(&)
EMPHAME UARCHARZ (20)
SAL HUMBER(6)

SOL> CREATE DR REPLACE FUMCTIDN get_sal
(EID IM EMP.EMPIDITYPE)
RETURH HUMBER

s

EMPSAL EMP.SALXTYPE :=8;
BEGIN

SELECT SAL IHTD EMPSAL
FROW EWF WHERE EWPID=EID;:
RETURM{EMPSAL) ;

END;

/

g Y e

1
1

wnction created.

Removing a Function
To remove a function, use following command:
Syn: DROP FUNCTION <FUNCTION NAME >;

Parameters
Parameters are the link between a subprogram code and the code calling
thesubprogram.
Parameter Modes
Parameter modes define the behavior of formal parameters of subprograms.
There are three types of parameter modes: IN, OUT, IN/OUT.

IN Mode

IN mode is used to pass values to the called subprogram. Inside the called
subprogram, an IN parameter acts like a constant and hence it cannot be
assigned a new value.

OUT Mode

An OUT parameter returns a value back to the caller subprogram.

IN/OUT

An IN/OUT parameter performs the duty of both IN parameter as well as
OUT parameter.

Difference between Function and Procedure

1. A procedure never returns a value to the calling portion of code, whereas a
function returns exactly one value to the calling program.

2. As functions are capable of returning a value, they can be used as elements
of SQL expressions, whereas the procedures cannot. However, user-defined
functions cannot be used in CHECK or DEFAULT constraints and cannot
manipulate database values, to obey function purity rules.

3. It is mandatory for a function to have at least one RETURN statement,
whereas for procedures there is no restriction. A procedure may have a RETURN
statement or may not.

Q: Explain Packages
PL/SQL Packages is schema object and collection of related data type

(variables, constants), cursors, procedures, functions are defining within a
single context. Package are device into two part,

1. Package Specification

2. Package Body
Package specification block you can define variables, constants, exceptions and
package body you can create procedure, function, and subprogram.

PL/SQL Specification: This contains the list of variables, constants, functions,
procedure names which are the part of the package. PL/SQL specification are
public declaration and visible to a program.
Syn:
CREATE[OR REPLACE| PACKAGE package name IS |AS [declaration |
BEGIN
[PROCEDURE]
[FUNCTION |
END|[package_name];

PL/SQL Body : This contains the actual PL/SQL statement code implementing
the logics of functions, procedures which are you already before declare in
"Package specification".
Syn:
CREATE[OR REPLACE] PACKAGE BODY package_name IS|AS [declaration]
BEGIN
[initialization_statement]
[PROCEDURE]
[FUNCTION |
EXCEPTION
WHEN built-in_exception_name_1 THEN
User defined statement (action) will be taken;
END;
PL/SQL Package Example
PL/SQL Package example step by step explain to you, you are create your
own package using this reference example. We have empl table having
employee information,
Package Specification Code
Create Package specification code for defining procedure, function IN or
OUT parameter and execute package specification program.
CREATEor REPLACE PACKAGE pkgl IS|AS PROCEDURE prol
(noin number, name out varchar?2);
FUNCTION funl
(noin number)
RETURN varchar2;
END;
/
Package Body Code
Create Package body code for implementing procedure or function that
are defined package specification. Once you implement execute this program.
CREATEor REPLACE PACKAGE BODY pkgl
IS
PROCEDURE prol(noin number,info our varchar?2)
IS
BEGIN
SELECT*INTO temp FROM empl WHERE eno =no;
END;
FUNCTION fun1(noin number)return varchar2
IS
name varchar2(20);
BEGIN
SELECT ename INTO name FROM empl WHERE eno =no;
RETURN name;
END;
END;

/
P1/SQL Program calling Package

Now we have a one package pkgl, to call package defined function, procedures
also pass the parameter and get the return result.
pkg_prg.sql
DECLARE
no number :=&no;
name varchar2(20);
BEGIN
pkgl.prol(no,info);
dbms_output.put_line('Procedure Result);
dbms_output.put_line(info.eno| |"'| |
info.ename| |' ||
info.edept| |' '| |
info.esalary| |''| |);
dbms_output.put_line('Function Result');
name := pkgl.funl(no);
dbms_output.put_line(name);
END;
/
Output: SQL>@pkg prg
no number &n=2
Procedure Result

2 marks jems Program Developer 38K
Function Result

Advantages of Packages
1. You can create package to store all related functions and procedures
are grouped together into single unit called packages.
2. Packages are reliable to granting a privileges.
3. All function and procedure within a package can share variable among
them.
4. Packages are support overloading to overload functions and
procedures.
5. Packages are improve the performance to loading the multiple object
into memory at once, therefore, subsequent calls to related program
doesn't required to calling physically I/0.
Package is reduce the traffic because all block execute all at once.

Q: What is Exception Handling?

PL/SQL provides a feature to handle the Exceptions which occur in a
PL/SQL Block known as exception Handling. Using Exception Handling we can
test the code and avoid it from exiting abruptly. When an exception occurs a
messages which explains its cause is recieved.

PL/SQL Exception message consists of three parts.

1) Type of Exception

2) An Error Code

3) A message
By Handling the exceptions we can ensure a PL/SQL block does not exit
abruptly.

2) Structure of Exception Handling.
The General Syntax for coding the exception section
DECLARE
Declaration section
BEGIN
Exception section
EXCEPTION
WHEN ex namel THEN
-Error handling statements
WHEN ex name2 THEN
-Error handling statements
WHEN Others THEN
-Error handling statements
END;

General PL/SQL statments can be used in the Exception Block.

When an exception is raised, Oracle searches for an appropriate exception
handler in the exception section. For example in the above example, if the error
raised is 'ex_namel ', then the error is handled according to the statements
under it. Since, it is not possible to determine all the possible runtime errors
during testing fo the code, the 'WHEN Others' exception is used to manage the
exceptions that are not explicitly handled. Only one exception can be raised in a
Block and the control does not return to the Execution Section after the error is
handled.

If there are nested PL/SQL blocks like this.
DELCARE
Declaration section
BEGIN
DECLARE
Declaration section
BEGIN
Execution section
EXCEPTION
Exception section
END;
EXCEPTION
Exception section
END;
In the above case, if the exception is raised in the inner block it should be
handled in the exception block of the inner PL/SQL block else the control moves
to the Exception block of the next upper PL/SQL Block. If none of the blocks
handle the exception the program ends abruptly with an error.
3) Types of Exception.
There are 3 types of Exceptions.
a) Named System Exceptions

b) Unnamed System Exceptions
c) User-defined Exceptions
a) Named System Exceptions
System exceptions are automatically raised by Oracle, when a program
violates a RDBMS rule. There are some system exceptions which are raised
frequently, so they are pre-defined and given a name in Oracle which are known
as Named System Exceptions.

For example: NO_DATA_FOUND and ZERO_DIVIDE are called Named System
exceptions.

Named system exceptions are:

1) Not Declared explicitly,

2) Raised implicitly when a predefined Oracle error occurs,

3) caught by referencing the standard name within an exception-handling
routine.

Exception Name Reason Error Number

CURSOR_ALREADY_OPEN When you open a cursor that is already ORA-06511
open.

INVALID_CURSOR When you perform an invalid operation ORA-01001

on a cursor like closing a cursor, fetch
data from a cursor that is not opened.

NO_DATA_FOUND When a SELECT...INTO clause does not ORA-01403
return any row from a table.

TOO_MANY_ROWS When you SELECT or fetch more than ORA-01422
one row into a record or variable.

ZERO _DIVIDE When you attempt to divide a number ORA-01476
by zero.

For Example: Suppose a NO_DATA_FOUND exception is raised in a proc, we
can write a code to handle the exception as given below.
BEGIN
Execution section
EXCEPTION
WHEN NO_DATA_FOUND THEN
dbms_output.put_line (A SELECT...INTO did not return any row.');
END;
b) Unnamed System Exceptions
Those system exception for which oracle does not provide a name is
known as unamed system exception. These exception do not occur frequently.
These Exceptions have a code and an associated message.
There are two ways to handle unnamed sysyem exceptions:
1. By using the WHEN OTHERS exception handler, or
2. By associating the exception code to a name and using it as a named
exception.

We can assign a name to unnamed system exceptions using a Pragma
called EXCEPTION_INIT. EXCEPTION_INIT will associate a predefined Oracle
error number to a programmer_defined exception name.

Steps to be followed to use unnamed system exceptions
are They are raised implicitly.
If they are not handled in WHEN Others they must be handled explicity.
To handle the exception explicity, they must be declared using Pragma
EXCEPTION_INIT as given above and handled referecing the user-defined
exception name in the exception section.

The general syntax to declare wunnamed system exception using
EXCEPTION_INIT is:
DECLARE
exception_name EXCEPTION;
PRAGMA
EXCEPTION_INIT (exception_name, Err_code);

BEGIN

Execution section

EXCEPTION

WHEN exception_name THEN
handle the exception

END;

For Example: Lets consider the product table and order_items table from sql
joins.

Here product_id is a primary key in product table and a foreign key in
order_items table. If we try to delete a product_id from the product table when it
has child records in order_id table an exception will be thrown with oracle code
number -2292. We can provide a name to this exception and handle it in the
exception section as given below.

DECLARE
Child_rec_exception EXCEPTION;
PRAGMA
EXCEPTION_INIT (Child_rec_exception, -2292);
BEGIN
Delete FROM product where product_id= 104,
EXCEPTION
WHEN Child_rec_exception
THEN Dbms_output.put_line('Child records are present for this
product_id."); END;
/
c) User-defined Exceptions
Apart from sytem exceptions we can explicity define exceptions based on
business rules. These are known as user-defined exceptions. Steps to be
followed to use user-defined exceptions:

They should be explicitly declared in the declaration section.

They should be explicitly raised in the Execution Section.

They should be handled by referencing the user-defined exception name

in the exception section.
Triggers

Triggers are stored programs, which are automatically executed or fired

when some events occur. Triggers are, in fact, written to be executed in
response to any of the following events -
N A database manipulation (DML) statement (DELETE, INSERT, or
UPDATE)

A database definition (DDL) statement (CREATE, ALTER, or DROP).

A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or
SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with
which the event is associated.

Purpose of Triggers

To generate data automatically

®,
o

To enforce complex integrity constraints

®,
X3

To customize complex security authorization

®,
o

To maintain replicate tables

®,
X3

To audit data modifications.
Creating Triggers
CREATE [OR REPLACE | TRIGGER trigger name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE} [OF col_name] ON table_name
[REFERENCING OLD AS o NEW AS n| [FOR EACH ROW| WHEN

(condition)

DECLARE Declaration-statements

BEGIN Executable-statements

EXCEPTION Exception-handling-statements
END; .

0‘0

CREATE [OR REPLACE] TRIGGER trigger_name — Creates or replaces
an existing trigger with the trigger_name.

<

: {BEFORE | AFTER | INSTEAD OF} - This specifies when the trigger
will be executed. The INSTEAD OF clause is used for creating trigger
on a view.

{INSERT [OR] | UPDATE [OR] | DELETE} — This specifies the DML
operation.
[OF col_name] — This specifies the column name that will be updated.

![QN table_name] — This specifies the name of the table associated with the
rigger.

[REFERENCING OLD AS o NEW AS n] - This allows you to refer new
and old values for various DML statements, such as INSERT, UPDATE,
and DELETE.

FOR EACH ROW] - This specifies a row-level trigger, i.e., the trigger will
e executed for each row being affected. Otherwise the trigger will

X/
*

execute just once when the SQL statement is executed, which is called

a table level trigger.

0’0

WHEN (condition) — This provides a condition for rows for which the
trigger would fire. This clause is valid only for row-level triggers.

Parts of Triggers

[OR | TRIGGER trigger_name
{BEFC'RE | AFTER | INSTEAD OF) ,
{I SSER [{_‘:.Rl | UPDIAT |[_"lR: | NELETI] J |_-:'I!- ,-_'.q_:.l_p]_.;l,“:.r;n] - . ::II S

ON rable_name

|REFERENCING OLD AS 0 NEW AS n]
|FOR EACH ROW] WHEN {condition} Triggering

DECLARE Declaration-statements Restriction

BEGIMN Executahle-statements
FXCEPTION Exception-handling-statements

ENID};

Types of PL/SQL Triggers

There are two types of triggers based on the which level it is triggered.
1) Row level trigger - An event is triggered for each row upated, inserted or
deleted.

2) Statement level trigger - An event is triggered for each sql statement
executed.

PL/SQL Trigger Execution Hierarchy

The following hierarchy is followed when a trigger is fired.

1) BEFORE statement trigger fires first.

2) Next BEFORE row level trigger fires, once for each row affected.

3) Then AFTER row level trigger fires once for each affected row. This events
will alternates between BEFORE and AFTER row level triggers.

4) Finally the AFTER statement level trigger fires.

For Example: Let's create a table 'product_check' which we can use to store
messages when triggers are fired.

CREATE TABLE product

(Message varchar2(50),

Current_Date number(32));

Let's create a BEFORE and AFTER statement and row level triggers for the
product table.

1) BEFORE UPDATE, Statement Level: This trigger will insert a record into
the table 'product_check' before a sql update statement is executed, at the
statement level.

CREATE or REPLACE TRIGGER Before_Update_Stat_product

BEFORE

UPDATE ON

product Begin

INSERT INTO product_check Values('Before update, statement

level',sysdate); END;

/

2) BEFORE UPDATE, Row Level: This trigger will insert a record into the table
‘product_check' before each row is updated.

CREATE or REPLACE TRIGGER Before_Upddate_Row_product

BEFORE

UPDATE ON product

FOR EACH ROW

BEGIN

INSERT INTO product_check Values('Before update row level',sysdate);

END;

/

3) AFTER UPDATE, Statement Level: This trigger will insert a record into the
table 'product_check' after a sql update statement is executed, at the statement
level.

CREATE or REPLACE TRIGGER After_Update_Stat_product

AFTER

UPDATE ON product

BEGIN

INSERT INTO product_check Values('After update, statement level', sysdate);
End;

/
4) AFTER UPDATE, Row Level: This trigger will insert a record into the table
‘product_check' after each row is updated.

CREATE or REPLACE TRIGGER After_Update_Row_product

AFTER

insert On product

FOR EACH ROW

BEGIN

INSERT INTO product_check Values('After update, Row level',sysdate);
END;

/

P 7 AnD VERIEICATION
ol 2
d ;ﬂd_}i\-ﬂifﬁ fﬂ;“ AN G h}‘

PR
d :I-I.'EFL—LEUﬁL_TET L""‘-—_—:-v_""_r-r
m—— :

STUDENT NAME:

SUBJECT CLASS:

VILLAGE:

PH NO:

COLLEGE:

